bovine viral diarrhoea
Recently Published Documents


TOTAL DOCUMENTS

617
(FIVE YEARS 67)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
L. Chantillon ◽  
B. Devriendt ◽  
B. De Jonge ◽  
J. Oostvogels ◽  
J. Coppens ◽  
...  

Abstract Background Between 2007 and 2011 several thousands of calves died from bovine neonatal pancytopenia (BNP), a bleeding syndrome triggered by vaccine induced alloantibodies from the dams. Following withdrawal of the involved bovine viral diarrhoea virus (BVDv) vaccine, the incidence of this condition rapidly decreased, with no reported cases in the last 5 years. Here, we report a recent immune-mediated pancytopenia in three calves from two different suckler herds, clinically indistinguishable from BNP. Case presentation Three Belgian Blue suckler calves from two different farms, aged around two weeks, showed multiple bleedings disseminated on the skin and petechiae and ecchymoses on the mucosae. Blood examination confirmed anaemia, leukopenia and thrombocytopenia. BVDv infection was excluded. Despite blood transfusion and cortisone therapy, all three animals died. Necropsy and histology confirmed bone marrow depletion. Binding of IgG from the dams on leukocytes of the calves was demonstrated by flow cytometry. Two calves, originating from the same farm, received colostrum from the same dam. None of the calves were given colostrum replacers or colostrum supplements. No link with the BNP causing BVDv vaccine could be evidenced. However, dams had been vaccinated against bovine herpesvirus 1, parainfluenza-3 virus, bovine respiratory syncytial virus and bluetongue virus serotype 8. Conclusions Alloimmune mediated pancytopenia was evidenced in three animals, clinically and pathologically indistinguishable from BNP. Whether this disease is again vaccine mediated remains to be determined.


Author(s):  
John VanLeeuwen ◽  
Joan Muraya ◽  
George Gitau ◽  
Dennis Makau ◽  
Bronwyn Crane ◽  
...  

Little is known of the risk factors associated with occurrence of Neospora caninum and Bovine Viral Diarrhoea Virus (BVDV) infection in Kenya. This cross-sectional study hypothesized that there are significant biosecurity measures associated with N. caninum and BVDV infections on smallholder dairy farms in Kenya that could be adopted to reduce seroprevalence and impacts. From 158 randomly selected farms in Meru County, Kenya, 470 serum samples were collected from dairy cattle (over six months of age and unvaccinated for these two pathogens). Sera were analyzed for antibodies to N. caninum and antibodies and antigens to BVDV. Data on risk factors were obtained through face-to-face interviews with the farmers. Multivariable logistic regression models were used to identify significant risk factors associated with seropositivity for the pathogens. The apparent seroprevalence of N. caninum, BVDV antibody, BVDV antigen, and co-infection with N. caninum and BVDV antibody and/or antigen were 35.1%, 47.1%, 36.2% and 18.5%, respectively. Risk factors associated with N. caninum antibody included: introducing milking cows into the farm, lending of cattle between farms, farm dogs having access to bovine aborted fetuses, and dogs whelping in the farm compound, with an interaction between the last two variables. BVDV antigen was associated with cattle having contact with pigs, and an interaction between cattle age and whether farms introduced new calves onto farms, and cattle age and whether visiting dairy farmers have access to the cow shed. Cows had higher odds of having BVDV antibodies compared to heifers. Factors associated with co-infection included cow parity, direct contact between dairy cattle, dogs and goats, and introducing new milking cows into the farms. Antibody and antigen results may be partly a function of classical swine fever virus or border disease virus interactions. Farmer education on these biosecurity measures is recommended, along with introduction of BVDV vaccination.


2021 ◽  
Author(s):  
Naomi S. Prosser ◽  
Edward M. Hill ◽  
Derek Armstrong ◽  
Lorna Gow ◽  
Michael J. Tildesley ◽  
...  

Abstract Background: Bovine viral diarrhoea virus (BVDV) causes substantial economic losses to cattle herds; however, control and eradication can be achieved by identifying and removing persistently infected cattle. Each UK nation has separate control programmes. The English scheme, BVDFree, started in 2016 and is voluntary. Methods: We analysed the test results submitted to BVDFree from 5,847 herds from 2016 to 2020. Results: In 2020, 13.5% of beef breeder herds and 20.0% of dairy herds had at least one positive test result. Though lower than in previous years, there was no clear trend in the proportion of positive tests over time. In antigen testing herds, 1.5% of tests from antigen positive herds were positive, which was 0.4% of tests from all antigen testing herds. Dairy herds and larger herds were more likely to join BVDFree and dairy herds were also more likely to antigen test than beef breeder herds. Larger herds, herds that used individual antigen testing and herds that had BVD positive test results were more likely to continue submitting tests to BVDFree. Conclusions: The findings provide a benchmark for the status of BVD control in England; continued analysis of test results will be important to assess progress towards eradication.


Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1137
Author(s):  
Sandie Arnoux ◽  
Fabrice Bidan ◽  
Alix Damman ◽  
Etienne Petit ◽  
Sébastien Assié ◽  
...  

Bovine viral diarrhoea (BVD) remains an issue despite control programs implemented worldwide. Virus introduction can occur through contacts with neighbouring herds. Vaccination can locally protect exposed herds. However, virus spread depends on herd characteristics, which may impair vaccination efficiency. Using a within-herd epidemiological model, we compared three French cow-calf farming systems named by their main breed: Charolaise, Limousine, and Blonde d’Aquitaine. We assessed vaccination strategies of breeding females assuming two possible protections: against infection or against vertical transmission. Four commercial vaccines were considered: Bovilis®, Bovela®, Rispoval®, and Mucosiffa®. We tested various virus introduction frequency in a naïve herd. We calculated BVD economic impact and vaccination reward. In Charolaise, BVD economic impact was 113€ per cow over 5 years after virus introduction. Irrespective of the vaccine and for a high enough risk of introduction, the yearly expected reward was 0.80€ per invested euro per cow. Vaccination should not be stopped before herd exposure has been decreased. In contrast, the reward was almost nil in Blonde d’Aquitaine and Limousine. This highlights the importance of accounting for herd specificities to assess BVD impact and vaccination efficiency. To guide farmers’ vaccination decisions against BVD, we transformed this model into a French decision support tool.


2021 ◽  
Vol 8 ◽  
Author(s):  
Andrea Franziska Huser ◽  
Jessica Grace Schär ◽  
Claudia Bachofen ◽  
Elena de Martin ◽  
Jasmine Portmann ◽  
...  

Bovine viral diarrhoea virus (BVDV) and Border disease virus (BDV) are closely related pestiviruses of cattle and sheep, respectively. Both viruses may be transmitted between either species, but control programs are restricted to BVDV in cattle. In 2008, a program to eradicate bovine viral diarrhoea (BVD) in cattle was started in Switzerland. As vaccination is prohibited, the cattle population is now widely naïve to pestivirus infections. In a recent study, we determined that nearly 10% of cattle are positive for antibodies to BDV. Here, we show that despite this regular transmission of BDV from small ruminants to cattle, we could only identify 25 cattle that were persistently infected with BDV during the last 12 years of the eradication program. In addition, by determining the BVDV and BDV seroprevalence in sheep in Central Switzerland before and after the start of the eradication, we provide evidence that BVDV is transmitted from cattle to sheep, and that the BVDV seroprevalence in sheep significantly decreased after its eradication in cattle. While BDV remains endemic in sheep, the population thus profited at least partially from BVD eradication in cattle. Importantly, on a national level, BVD eradication does not appear to be generally derailed by the presence of pestiviruses in sheep. However, with every single virus-positive cow, it is necessary to consider small ruminants as a potential source of infection, resulting in costly but essential investigations in the final stages of the eradication program.


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1263
Author(s):  
Caitlin A. Evans ◽  
Michael P. Reichel

Bovine viral diarrhoea virus (BVDV) is an economically important and highly prevalent virus of domestic cattle. Infections with BVDV may lead to both, reproductive and immunological effects that can result in widespread calf losses and increased susceptibility to diseases, such as mastitis and respiratory disease. While BVDV is generally considered to be host specific, it and other Pestivirus species, such as Border disease virus (BDV) in sheep, have been shown to be infecting species other than those from which they were originally isolated from. Recently BVDV was placed on the OIE’s list of notifiable disease and control and eradication programmes for BVDV have been developed throughout much of Europe, the United States, and the United Kingdom. While some countries, including Sweden and Ireland have successfully implemented eradication programmes, other countries such as New Zealand and Australia are still in the early stages of BVDV control. Despite effective control methods, incursions of BVDV into previously cleared herds still occur. While the cause of these incursions is often due to lapses in control methods, the ability of ruminant pestiviruses to infect species other than cattle poses the question as to whether non-bovine species could be impeding the success of BVDV eradication and control. As such, the aim of this review is to make mention of what is known about the cross-species transmission of BVDV, BDV and other pestiviruses between cattle and non-bovine ungulate species and draw conclusions as to the risk non-bovine species pose to the successful control and eradication of BVDV from cattle.


2021 ◽  
Vol 8 ◽  
Author(s):  
Matthias Schweizer ◽  
Hanspeter Stalder ◽  
Anja Haslebacher ◽  
Martin Grisiger ◽  
Heinzpeter Schwermer ◽  
...  

Bovine viral diarrhoea virus (BVDV) and related ruminant pestiviruses occur worldwide and cause considerable economic losses in livestock and severely impair animal welfare. Switzerland started a national mandatory control programme in 2008 aiming to eradicate BVD from the Swiss cattle population. The peculiar biology of pestiviruses with the birth of persistently infected (PI) animals upon in utero infection in addition to transient infection of naïve animals requires vertical and horizontal transmission to be taken into account. Initially, every animal was tested for PI within the first year, followed by testing for the presence of virus in all newborn calves for the next four years. Prevalence of calves being born PI thus diminished substantially from around 1.4% to <0.02%, which enabled broad testing for the virus to be abandoned and switching to economically more favourable serological surveillance with vaccination being prohibited. By the end of 2020, more than 99.5% of all cattle farms in Switzerland were free of BVDV but eliminating the last remaining PI animals turned out to be a tougher nut to crack. In this review, we describe the Swiss BVD eradication scheme and the hurdles that were encountered and still remain during the implementation of the programme. The main challenge is to rapidly identify the source of infection in case of a positive result during antibody surveillance, and to efficiently protect the cattle population from re-infection, particularly in light of the endemic presence of the related pestivirus border disease virus (BDV) in sheep. As a consequence of these measures, complete eradication will (hopefully) soon be achieved, and the final step will then be the continuous documentation of freedom of disease.


Livestock ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 220-226
Author(s):  
Derek Armstrong ◽  
Lorna Gow

Bovine viral diarrhoea (BVD) is an infectious disease that significantly affects the health, welfare and productivity of cattle. Elimination of bovine viral diarrhoea virus (BVDV) is technically feasible. There are mandatory BVDV elimination programmes in Ireland, Northern Ireland, Isle of Man and Scotland. There are voluntary BVD programmes in England and Wales. The main focus of BVDV elimination programmes is the identification and slaughter of cattle persistently infected with BVDV (PIs). PI animals shed large amounts of virus in all excretions and secretions and are the main source of infection for other cattle. BVDV elimination can only succeed within a realistic timescale if PIs are removed quickly enough to minimise the risk of infection resulting in the generation of further PI animals. Maintaining stakeholder cohesion, commitment and engagement is also key in a BVD programme. All cattle farms need to be free of BVDV to eliminate the risk of infection and voluntary programmes are unlikely to reach all farms. The mandatory programme in Ireland started in 2013 and it is aiming to seek a declaration of freedom under the EU Animal Health Law in 2023. The other programmes are at various stages along the pathway to BVDV elimination. The stated intention of the cattle industry in the UK is elimination of BVDV by 2031. This will be a stretch target, particularly in England, but should be possible if the approach is science-based and the delivery programmes have the committed support of farmers and veterinary surgeons.


2021 ◽  
Vol 8 ◽  
Author(s):  
Maria P. Guelbenzu-Gonzalo ◽  
Jose-Maria Lozano ◽  
Padraig O'Sullivan ◽  
Elizabeth A. Lane ◽  
David A. Graham

Bovine viral diarrhoea (BVD) is an important endemic disease of cattle. In Ireland, an industry-led compulsory eradication programme began in January 2013. The main elements of this programme are the identification and elimination of persistently infected (PI) calves by testing all new-borns, the implementation of biosecurity to prevent re-introduction of disease and continuous surveillance. In 2016, a standardised framework was developed to investigate herds with positive results. This is delivered by trained private veterinary practitioners (PVP). The investigation's aims are 3-fold: firstly, to identify plausible sources of infection; secondly, to ensure that no virus-positive animals remain on farm by resolving the BVD status of all animals in the herd; and thirdly, agreeing up to three biosecurity measures with the herd owner to prevent the re-introduction of the virus. Each investigation follows a common approach comprising four steps based on information from the programme database and collected on-farm: firstly, identifying the time period when each virus-positive calf was exposed in utero (window of susceptibility, taken as 30–120 days of gestation); secondly, determining the location of the dam of each positive calf during this period; thirdly, to investigate potential sources of exposure, either within the herd or external to it; and finally, based on the findings, the PVP and herdowner agree to implement up to three biosecurity measures to minimise the risk of reintroduction. Between 2016 and 2020, 4,105 investigations were completed. The biosecurity recommendations issued more frequently related to the risks of introduction of virus associated with contact with neighbouring cattle at pasture, personnel (including the farmer), the purchase of cattle and vaccination. Although each investigation generates farm-specific outcomes and advice, the aggregated results also provide an insight into the most commonly identified transmission pathways for these herds which inform overall programme communications on biosecurity. The most widely identified plausible sources of infection over these years included retained BVD-positive animals, Trojan births, contact at boundaries and indirect contact through herd owner and other personnel in the absence of appropriate hygiene measures. While generated in the context of BVD herd investigations, the findings also provide an insight into biosecurity practises more generally on Irish farms.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jaka Jakob Hodnik ◽  
Žaklin Acinger-Rogić ◽  
Mentor Alishani ◽  
Tiina Autio ◽  
Ana Balseiro ◽  
...  

The COST action “Standardising output-based surveillance to control non-regulated diseases of cattle in the European Union (SOUND control),” aims to harmonise the results of surveillance and control programmes (CPs) for non-EU regulated cattle diseases to facilitate safe trade and improve overall control of cattle infectious diseases. In this paper we aimed to provide an overview on the diversity of control for these diseases in Europe. A non-EU regulated cattle disease was defined as an infectious disease of cattle with no or limited control at EU level, which is not included in the European Union Animal health law Categories A or B under Commission Implementing Regulation (EU) 2020/2002. A CP was defined as surveillance and/or intervention strategies designed to lower the incidence, prevalence, mortality or prove freedom from a specific disease in a region or country. Passive surveillance, and active surveillance of breeding bulls under Council Directive 88/407/EEC were not considered as CPs. A questionnaire was designed to obtain country-specific information about CPs for each disease. Animal health experts from 33 European countries completed the questionnaire. Overall, there are 23 diseases for which a CP exists in one or more of the countries studied. The diseases for which CPs exist in the highest number of countries are enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis, bovine viral diarrhoea and anthrax (CPs reported by between 16 and 31 countries). Every participating country has on average, 6 CPs (min–max: 1–13) in place. Most programmes are implemented at a national level (86%) and are applied to both dairy and non-dairy cattle (75%). Approximately one-third of the CPs are voluntary, and the funding structure is divided between government and private resources. Countries that have eradicated diseases like enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis and bovine viral diarrhoea have implemented CPs for other diseases to further improve the health status of cattle in their country. The control of non-EU regulated cattle diseases is very heterogenous in Europe. Therefore, the standardising of the outputs of these programmes to enable comparison represents a challenge.


Sign in / Sign up

Export Citation Format

Share Document