nio nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

724
(FIVE YEARS 256)

H-INDEX

57
(FIVE YEARS 13)

Author(s):  
Priya Gupta ◽  
Kuldeep Kumar ◽  
Syed Hasan Saeed ◽  
Narendra Kumar Pandey ◽  
Vernica Verma ◽  
...  

Abstract This research deals with study of enhanced liquefied petroleum gas (LPG) and humidity sensing properties of Sn-doped NiO pellets synthesized by chemical precipitation route. XRD, FTIR, SEM, and UV–Vis studies were employed to understand the effect of Sn doping on the structural, morphological, and optical properties of the NiO nanoparticles. XRD results revealed that doping of tin in NiO had a significant impact on the crystallite size, peak intensity, strain, lattice parameter, etc. The calculated crystallite size of pure and 3 mol% doped NiO was 33.2 nm and 13.3 nm, respectively. SEM micrographs revealed that the structure of the samples was irregular spheres and non-homogeneous. The dependence of LPG sensing properties on the structural and surface morphological properties has also been studied. The maximum response of 30.46% to 2.0 vol% of LPG was observed at room temperature (300 K). The same sample also shows high humidity sensing response of 87.11% towards 90% RH. Graphic abstract


2022 ◽  
Author(s):  
Ebrahim Nazaripour ◽  
Farideh Mosazadeh ◽  
Seyedeh Sharifeh Rahimi ◽  
Hajar Q. Alijani ◽  
Elham Isaei ◽  
...  

2022 ◽  
Vol 275 ◽  
pp. 125190
Author(s):  
Alaa A. Sery ◽  
Walied A.A. Mohamed ◽  
F.F. Hammad ◽  
Mostafa M.H. Khalil ◽  
H.K. Farag

2022 ◽  
Vol 889 ◽  
pp. 161706
Author(s):  
Masih Darbandi ◽  
Mahsa Eynollahi ◽  
Naghme Badri ◽  
Mahsa Fathalipour Mohajer ◽  
Zi-An Li

2021 ◽  
Author(s):  
Alaa Abdallah ◽  
Ramadan Awad

Abstract Pure and different concentrations from (Gd, Ru) co-doped NiO nanoparticles, capped with Polyvinylpyrrolidone (PVP), were fabricated by the co-precipitation method. The nanoparticles were characterized by different techniques. The Rietveld refinements of X-Ray Diffraction (XRD) patterns confirmed the formation of the pure face-centered-cubic NiO phase. The X-ray Photo-induced Spectroscopy (XPS) assured the trivalent oxidation state of the doped ions Gd3+ and Ru3+ and unveiled the multiple oxidation states of nickel ions (Ni2+ and Ni3+), emerging from the vacancies in the samples. The Transmission Electron Microscope (TEM) images showed the pseudospherical morphology of the samples and the Energy Dispersive X-ray permitted the quantitative analysis of the presented elements and their homogeneous distribution. The Raman and Fourier Transform Infra-Red (FTIR) spectra depicted the fundamental vibrational bands of NiO nanoparticles, confirming their purity. The UV-visible spectroscopy enabled the absorption measurements and the energy gap calculations. The co-dopants increased the energy bandgap of NiO nanoparticles from 3.15 eV for pure NiO to 3.62 eV with the highest concentration of the co-dopants (x = 0.02) The photoluminescence (PL) spectra gave insights into the possible defects present in the samples, such as nickel vacancies, single and double oxygen vacancies, and oxygen interstitials. The Vibrating Sample Magnetometer (VSM) studied the room temperature M-H loops of the co-doped samples. A combination of ferromagnetic, antiferromagnetic, and paramagnetic contributions was noticed and treated according to the law of approach to saturation and bound magnetic polaron (BMP) model. The magnetic parameters, such as the saturation magnetization, exchange and anisotropy field, and the BMP concentration were extracted from the fitted models and discussed in terms of the co-dopants’ concentration. The co-doped samples showed a softer magnetic behavior, which is recommended for data storage applications.


2021 ◽  
Vol 66 (1) ◽  
Author(s):  
Fatma Sarf

Abstract. This study examines amorphous SiO2-supported NiO particles by nickel concentration and calcination temperature arrangement to determine photoluminescence emission peaks and magnetic properties. Conventional co-precipitation with thermal calcination was used to produce NiO nanoparticles. Cubic NiO crystallization with single phase was improved by doubling the nickel concentration by calcination at 500 ºC and 600 ºC. Average crystalline size of 72 nm was obtained in the samples where double nickel concentration with calcination temperature at 600 ºC. Granular forms have been observed in all samples, and nickel clusters were shown in the samples where the nickel concentration is twice as high. Green band emission intensity increases with improved NiO crystallinity due to surface oxygen vacancies at 505 nm. It is interesting to observe ferrimagnetism for SiO2-supported NiO particles calcined at 500 ºC. From these results, optimal synthesis procedure and reduction in nucleation growth of NiO nanoparticles was achieved by double nickel concentration with calcination temperature at 600 ºC.   Resumen. Este estudio examina partículas de NiO soportadas en SiO2. El estudio comprende la variación de la concentración de níquel y la temperatura de calcinación para determinar los picos de emisión de fotoluminiscencia y las propiedades magnéticas. Se utilizó la coprecipitación convencional con calcinación para producir nanopartículas de NiO. Se mejoró la cristalización cúbica de NiO con fase única al duplicar la concentración de níquel y calcinación a 500 ºC y 600 ºC. Se obtuvo un tamaño cristalino promedio de 72 nm en las muestras donde se duplicó la concentración de níquel con temperatura de calcinación a 600 ºC. Se observaron formas granulares en todas las muestras, y se encontraron agregados de níquel en las muestras donde la concentración de níquel fue el doble. La intensidad de la banda de emisión aumenta con la cristalinidad de NiO debido a las vacantes de oxígeno en la superficie. Es interesante observar el ferrimagnetismo de las partículas de NiO soportadas en SiO2 calcinadas a 500 ºC. A partir de estos resultados, se logró un procedimiento de síntesis óptimo y la reducción del crecimiento de nucleación de nanopartículas de NiO mediante una concentración doble de níquel con una temperatura de calcinación de 600 ºC.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3379
Author(s):  
Seung Geun Jo ◽  
Chung-Soo Kim ◽  
Sang Jun Kim ◽  
Jung Woo Lee

Efficient water electrolysis is one of the key issues in realizing a clean and renewable energy society based on hydrogen fuel. However, several obstacles remain to be solved for electrochemical water splitting catalysts, which are the high cost of noble metals and the high overpotential of alternative catalysts. Herein, we suggest Ni-based alternative catalysts that have comparable performances with precious metal-based catalysts and could be applied to both cathode and anode by precise phase control of the pristine catalyst. A facile microwave-assisted procedure was used for NiO nanoparticles anchored on reduced graphene oxide (NiO NPs/rGO) with uniform size distribution in ~1.8 nm. Subsequently, the Ni-NiO dual phase of the NPs (A-NiO NPs/rGO) could be obtained via tailored partial reduction of the NiO NPs/rGO. Moreover, we demonstrate from systematic HADDF-EDS and XPS analyses that metallic Ni could be formed in a local area of the NiO NP after the reductive annealing procedure. Indeed, the synergistic catalytic performance of the Ni-NiO phase of the A-NiO NPs/rGO promoted hydrogen evolution reaction activity with an overpotential as 201 mV at 10 mA cm−2, whereas the NiO NPs/rGO showed 353 mV. Meanwhile, the NiO NPs/rGO exhibited the most excellent oxygen evolution reaction performance among all of the Ni-based catalysts, with an overpotential of 369 mV at 10 mA cm−2, indicating that they could be selectively utilized in the overall water splitting. Furthermore, both catalysts retained their activities over 12 h with constant voltage and 1000 cycles under cyclic redox reaction, proving their high durability. Finally, the full cell capability for the overall water electrolysis system was confirmed by observing the generation of hydrogen and oxygen on the surface of the cathode and anode.


Sign in / Sign up

Export Citation Format

Share Document