diel pattern
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 12)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Wen-Chen Chou ◽  
Lan-Feng Fan ◽  
Chang-Chang Yang ◽  
Ying-Hsuan Chen ◽  
Chin-Chang Hung ◽  
...  

In contrast to other seagrass meadows where seawater carbonate chemistry generally shows strong diel variations with higher pH but lower partial pressure of CO2 (pCO2) during the daytime and lower pH but higher pCO2 during nighttime due to the alternation in photosynthesis and respiration, the seagrass meadows of the inner lagoon (IL) on Dongsha Island had a unique diel pattern with extremely high pH and low pCO2 across a diel cycle. We suggest that this distinct diel pattern in pH and pCO2 could be associated with the enhancement of total alkalinity (TA) production coupled to carbonate sediment dissolution in a semienclosed lagoon. The confinement of the IL may hamper water exchange and seagrass detritus export to the adjacent open ocean, which may result in higher organic matter loading to the sediments, and longer residence time of the water in the IL, accompanied by microbial respiration (both aerobic and anaerobic) that may reduce carbonate saturation level to drive carbonate dissolution and thus TA elevation, thereby forming such a unique diel pattern in carbonate chemistry. This finding further highlights the importance of considering TA production through metabolic carbonate dissolution when evaluating the potential of coastal blue carbon ecosystems to buffer ocean acidification and to absorb atmospheric CO2, in particular in a semienclosed setting.


2021 ◽  
Vol 64 (4) ◽  
pp. 1211-1225
Author(s):  
David B. Parker ◽  
Kenneth D. Casey ◽  
Will Willis ◽  
Beverly Meyer

HighlightsNitrous oxide and methane emissions were measured from a commercial beef feedyard following large rainfall events.Nitrous oxide emissions dropped below detection levels for ten days following a 77 mm rainfall event.Daily N2O and CH4 emissions followed a diel pattern, peaking at manure temperatures of 36°C to 38°C.Results will be used to refine empirical models for predicting GHG emissions from open-lot feedyards.Abstract. More than six million beef cattle are fed annually in feedyards on the semiarid Southern Great Plains (SGP). Manure deposited on the open-lot pen surfaces contributes to greenhouse gas (GHG) emissions. Nitrous oxide (N2O) and methane (CH4) are GHGs linked to climate change, and both have global warming potentials greater than carbon dioxide (CO2). Two sampling campaigns were conducted in 2019 to quantify N2O and CH4 emissions from open-lot pen surfaces. The occurrence of large, unforecast rainfall events during both campaigns provided an opportunity to compare GHG emissions from the dry manure before rainfall and from the wetted pen surface for one to two weeks following precipitation. Temporal variability was quantified by continuous sampling using six to eight automated flux chambers, a multiplexer system, and real-time analyzers. Spatial variability was quantified using a recirculating portable chamber on a 5 × 8 grid. Nitrous oxide emissions dropped below detection levels for ten days after the precipitation event. Nitrous oxide emissions were related to nitrification or other aerobic processes. Methane emissions dropped below detection levels for five days after the precipitation event and then increased to pre-rainfall levels by day 8. When present, N2O and CH4 emissions followed a diel pattern, with the highest emissions occurring during the afternoon when manure pack temperatures at the 25 mm depth were 36°C to 38°C and ambient temperatures were 31°C to 32°C. Average CH4 emissions from the feedyard pen surface were 96-fold lower than estimated enteric CH4 emissions. The results of this field research will be used to refine empirical models for predicting annual N2O and CH4 emissions from open-lot beef cattle feedyards on the semiarid SGP. Keywords: Beef cattle, Flux chamber, Greenhouse gas, Manure, Nitrous oxide, Rainfall.


2020 ◽  
Author(s):  
Wen-Chen Chou ◽  
Lan-Feng Fan ◽  
Chang-Chang Yang ◽  
Ying-Hsuan Chen ◽  
Chin-Chang Hung ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anna N. Osiecka ◽  
Owen Jones ◽  
Magnus Wahlberg

Abstract Wild harbour porpoises (Phocoena phocoena) mainly forage during the night and, because they rely on echolocation to detect their prey, this is also when they are most acoustically active. It has been hypothesised that this activity pattern is a response to the diel behaviour of their major prey species. To test this hypothesis, we monitored the acoustic activity of two captive harbour porpoises held in a net pen continuously during a full year and fed by their human keepers during daylight hours, thus removing the influence of prey activity. The porpoises were exposed to similar temperature and ambient light conditions as free-ranging animals living in the same region. Throughout the year, there was a pronounced diel pattern in acoustic activity of the porpoises, with significantly greater activity at night, and a clear peak around sunrise and sunset throughout the year. Clicking activity was not dependent on lunar illumination or water level. Because the porpoises in the pen are fed and trained during daylight hours, the results indicate that factors other than fish behaviour are strongly influencing the diel clicking behaviour pattern of the species.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 597
Author(s):  
Tina Oldham ◽  
Tim Dempster ◽  
Philip Crosbie ◽  
Mark Adams ◽  
Barbara Nowak

Amoebic gill disease (AGD), caused by the amoeba Neoparamoeba perurans, has led to considerable economic losses in every major Atlantic salmon producing country, and is increasing in frequency. The most serious infections occur during summer and autumn, when temperatures are high and poor dissolved oxygen (DO) conditions are most common. Here, we tested if exposure to cyclic hypoxia at DO saturations of 40–60% altered the course of infection with N. perurans compared to normoxic controls maintained at ≥90% DO saturation. Although hypoxia exposure did not increase initial susceptibility to N. perurans, it accelerated progression of the disease. By 7 days post-inoculation, amoeba counts estimated from qPCR analysis were 1.7 times higher in the hypoxic treatment than in normoxic controls, and cumulative mortalities were twice as high (16 ± 4% and 8 ± 2%), respectively. At 10 days post-inoculation, however, there were no differences between amoeba counts in the hypoxic and normoxic treatments, nor in the percentage of filaments with AGD lesions (control = 74 ± 2.8%, hypoxic = 69 ± 3.3%), or number of lamellae per lesion (control = 30 ± 0.9%, hypoxic = 27.9 ± 0.9%) as determined by histological examination. Cumulative mortalities at the termination of the experiment were similarly high in both treatments (hypoxic = 60 ± 2%, normoxic = 53 ± 11%). These results reveal that exposure to cyclic hypoxia in a diel pattern, equivalent to what salmon are exposed to in marine aquaculture cages, accelerated the progression of AGD in post-smolts.


2020 ◽  
Vol 104 (3) ◽  
Author(s):  
Jian‐Yong Zeng ◽  
Thi‐Minh‐Dien Vuong ◽  
Jia‐Xing Guo ◽  
Jiang‐Hong Shi ◽  
Zhong‐Bin Shi ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Amy F. Smoothey ◽  
Kate A. Lee ◽  
Victor M. Peddemors

AbstractBull sharks (Carcharhinus leucas) are known to frequent nearshore environments, particularly estuaries, resulting in interactions with humans. Knowledge of the behaviour of large individuals in temperate, estuarine environments is limited. This acoustic telemetry study reports on residency and movement patterns of 40 sub-adult and adult bull sharks in Sydney Harbour, a large temperate estuary, over seven years. Bull sharks exhibited clear seasonal patterns in their occurrence during the austral summer and autumn, with abundance peaking in January and February. This pattern was consistent between sexes and across all sizes. Bull sharks displayed weak diel differences in their spatial distribution, with individuals using areas further from the Harbour entrance more frequently during the day and at low tides. A diel pattern in depth use was apparent, with sharks utilising deeper water during daytime and moving shallower at night. Bull sharks had high individual inter-annual variability in their spatial distribution, however, when data were aggregated among all individuals and years, two locations of increased use were identified. Water temperature was the key predictor for seasonal movements and return behaviour to this estuary, suggesting that increasing water temperatures as a result of climate change may lead to higher shark abundance and possibly longer periods of residency in Sydney Harbour. Understanding the drivers for bull shark abundance and distribution will hopefully facilitate better education and shark smart behaviour by estuarine water-users, especially during summer and autumn months.


Sign in / Sign up

Export Citation Format

Share Document