hydrogen exchange mass spectrometry
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 17)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Adam M Zmyslowski ◽  
Michael C Baxa ◽  
Isabelle A Gagnon ◽  
Tobin C Sosnick

To import large metabolites across the outer membrane of Gram-negative bacteria, TonB dependent transporters (TBDTs) undergo significant conformational change. After substrate binding in BtuB, the E. coli vitamin B12 TBDT, TonB binds and couples BtuB to the inner membrane proton motive force that powers transport (1). But, the role of TonB in rearranging the plug domain to form a putative pore remains enigmatic. Some studies focus on force-mediated unfolding (2) while others propose force-independent pore formation (3) by TonB binding leading to breakage of a salt bridge termed the "Ionic Lock". Our hydrogen exchange/mass spectrometry measurements in E. coli outer membranes find that the region surrounding the Ionic Lock, far from the B12 site, is fully destabilized upon substrate binding. A comparison of the exchange between the B12 bound and the B12&TonB bound complexes indicates that B12 binding is sufficient to unfold the Ionic Lock region with the subsequent binding of a TonB fragment having much weaker effects. TonB binding accelerates exchange in the third substrate binding loop, but pore formation does not obviously occur in this or any region. This study provides a detailed structural and energetic description of the early stages of B12 passage that provides support both for and against current models of the transport process.


2020 ◽  
Vol 477 (16) ◽  
pp. 2981-2998
Author(s):  
Nikhil K. Tulsian ◽  
Abhijeet Ghode ◽  
Ganesh S. Anand

In cAMP-Protein Kinase A (PKA) signaling, A-kinase anchoring protein scaffolds assemble PKA in close proximity to phosphodiesterases (PDE), kinase-substrates to form signaling islands or ‘signalosomes’. In its basal state, inactive PKA holoenzyme (R2:C2) is activated by binding of cAMP to regulatory (R)-subunits leading to dissociation of active catalytic (C)-subunits. PDEs hydrolyze cAMP-bound to the R-subunits to generate 5′-AMP for termination and resetting the cAMP signaling. Mechanistic basis for cAMP signaling has been derived primarily by focusing on the proteins in isolation. Here, we set out to simulate cAMP signaling activation-termination cycles in a signalosome-like environment with PDEs and PKA subunits in close proximity to each other. Using a combination of fluorescence polarization and amide hydrogen exchange mass spectrometry with regulatory (RIα), C-subunit (Cα) and PDE8 catalytic domain, we have tracked movement of cAMP through activation-termination cycles. cAMP signaling operates as a continuum of four phases: (1) Activation and dissociation of PKA into R- and C-subunits by cAMP and facilitated by substrate (2) PDE recruitment to R-subunits (3) Hydrolysis of cAMP to 5′-AMP (4) Reassociation of C-subunit to 5′-AMP-bound-RIα in the presence of excess ATP to reset cAMP signaling to form the inactive PKA holoenzyme. Our results demonstrate that 5′-AMP is not merely a passive hydrolysis end-product of PDE action. A ‘ligand-free’ state R subunit does not exist in signalosomes as previously assumed. Instead the R-subunit toggles between cAMP- or 5′-AMP bound forms. This highlights, for the first time, the importance of 5′-AMP in promoting adaptation and uncovers adenylate control in cAMP signaling.


2020 ◽  
Vol 117 (17) ◽  
pp. 9384-9392 ◽  
Author(s):  
Xiang Ye ◽  
JiaBei Lin ◽  
Leland Mayne ◽  
James Shorter ◽  
S. Walter Englander

Hsp104 provides a valuable model for the many essential proteostatic functions performed by the AAA+ superfamily of protein molecular machines. We developed and used a powerful hydrogen exchange mass spectrometry (HX MS) analysis that can provide positionally resolved information on structure, dynamics, and energetics of the Hsp104 molecular machinery, even during functional cycling. HX MS reveals that the ATPase cycle is rate-limited by ADP release from nucleotide-binding domain 1 (NBD1). The middle domain (MD) serves to regulate Hsp104 activity by slowing ADP release. Mutational potentiation accelerates ADP release, thereby increasing ATPase activity. It reduces time in the open state, thereby decreasing substrate protein loss. During active cycling, Hsp104 transits repeatedly between whole hexamer closed and open states. Under diverse conditions, the shift of open/closed balance can lead to premature substrate loss, normal processing, or the generation of a strong pulling force. HX MS exposes the mechanisms of these functions at near-residue resolution.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Niko Amin-Wetzel ◽  
Lisa Neidhardt ◽  
Yahui Yan ◽  
Matthias P Mayer ◽  
David Ron

Coupling of endoplasmic reticulum (ER) stress to dimerisation-dependent activation of the UPR transducer IRE1 is incompletely understood. Whilst the luminal co-chaperone ERdj4 promotes a complex between the Hsp70 BiP and IRE1’s stress-sensing luminal domain (IRE1LD) that favours the latter’s monomeric inactive state and loss of ERdj4 de-represses IRE1, evidence linking these cellular and in vitro observations is presently lacking. We report that enforced loading of endogenous BiP onto endogenous IRE1α repressed UPR signalling in CHO cells and deletions in the IRE1α locus that de-repressed the UPR in cells, encode flexible regions of IRE1LD that mediated BiP-induced monomerisation in vitro. Changes in the hydrogen exchange mass spectrometry profile of IRE1LD induced by ERdj4 and BiP confirmed monomerisation and were consistent with active destabilisation of the IRE1LD dimer. Together, these observations support a competition model whereby waning ER stress passively partitions ERdj4 and BiP to IRE1LD to initiate active repression of UPR signalling.


Sign in / Sign up

Export Citation Format

Share Document