insect innate immunity
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 2)

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 725
Author(s):  
Ioannis Eleftherianos

The insect innate immune system is under strong selection pressure to evolve resistance to pathogenic infections [...]


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 330
Author(s):  
Hai Huang ◽  
Juan Du ◽  
Shang-Wei Li ◽  
Tao Gong

Coridius chinensis is a valuable medicinal insect resource in China. Previous studies have indicated that the antibacterial and anticancer effects of the C. chinensis extract mainly come from the active polypeptides. Lysozyme is an effective immune effector in insect innate immunity and usually has excellent bactericidal effects. There are two kinds of lysozymes in insects, c-type and i-type, which play an important role in innate immunity and intestinal digestion. Studying lysozyme in C. chinensis will be helpful to further explore the evolutionary relationship and functional differences among lysozymes of various species and to determine whether they have biological activity and medicinal value. In this study, a lysozyme CcLys2 was identified from C. chinensis. CcLys2 contains 223 amino acid residues, and possesses a typical domain of the c-type lysozyme and a putative catalytic site formed by two conserved residues Glu32 and Asp50. Phylogenetic analysis showed that CcLys2 belongs to the H-branch of the c-type lysozyme. The analysis of spatiotemporal expression patterns indicated that CcLys2 was mainly expressed in the fat body of C. chinensis adults and was highly expressed in the second- and fifth-instar nymphs. In addition, CcLys2 was significantly up-regulated after injecting and feeding bacteria. In the bacterial inhibition assay, it was found that CcLys2 had antibacterial activity against Gram-positive bacteria at a low pH. These results indicate that CcLys2 has muramidase activity, involves in the innate immunity of C. chinensis, and is also closely related to the bacterial immune defense or digestive function of the intestine.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 465
Author(s):  
Colleen A. Mangold ◽  
David P. Hughes

Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communication on host behavior and reflect on its potential role as an important tool in the “neuro-engineer” toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune communication. We close by identifying opportunities for integrating research in insect innate immunity, glial cell physiology, and neurobiology in the investigation of behavioral manipulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liang Jiang

The lepidopteran model silkworm, Bombyx mori, is an important economic insect. Viruses cause serious economic losses in sericulture; thus, the economic importance of these viruses heightens the need to understand the antiviral pathways of silkworm to develop antiviral strategies. Insect innate immunity pathways play a critical role in the outcome of infection. The RNA interference (RNAi), NF-kB-mediated, immune deficiency (Imd), and stimulator of interferon gene (STING) pathways, and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway are the major antiviral defense mechanisms, and these have been shown to play important roles in the antiviral immunity of silkworms. In contrast, viruses can modulate the prophenol oxidase (PPO), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and the extracellular signal-regulated kinase (ERK) signaling pathways of the host to elevate their proliferation in silkworms. In this review, we present an overview of the current understanding of the main immune pathways in response to viruses and the signaling pathways modulated by viruses in silkworms. Elucidation of these pathways involved in the antiviral mechanism of silkworms furnishes a theoretical basis for the enhancement of virus resistance in economic insects, such as upregulating antiviral immune pathways through transgenic overexpression, RNAi of virus genes, and targeting these virus-modulated pathways by gene editing or inhibitors.


2020 ◽  
Vol 7 ◽  
Author(s):  
Marcia Gumiel ◽  
Debora Passos de Mattos ◽  
Cecília Stahl Vieira ◽  
Caroline Silva Moraes ◽  
Carlos José de Carvalho Moreira ◽  
...  

Rhodnius prolixus, Panstrongylus megistus, Triatoma infestans, and Dipetalogaster maxima are all triatomines and potential vectors of the protozoan Trypanosoma cruzi responsible for human Chagas’ disease. Considering that the T. cruzi’s cycle occurs inside the triatomine digestive tract (TDT), the analysis of the TDT protein profile is an essential step to understand TDT physiology during T. cruzi infection. To characterize the protein profile of TDT of D. maxima, P. megistus, R. prolixus, and T. infestans, a shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was applied in this report. Most proteins were found to be closely related to metabolic pathways such as gluconeogenesis/glycolysis, citrate cycle, fatty acid metabolism, oxidative phosphorylation, but also to the immune system. We annotated this new proteome contribution gathering it with those previously published in accordance with Gene Ontology and KEGG. Enzymes were classified in terms of class, acceptor, and function, while the proteins from the immune system were annotated by reference to the pathways of humoral response, cell cycle regulation, Toll, IMD, JNK, Jak-STAT, and MAPK, as available from the Insect Innate Immunity Database (IIID). These pathways were further subclassified in recognition, signaling, response, coagulation, melanization and none. Finally, phylogenetic affinities and gene expression of annexins were investigated for understanding their role in the protection and homeostasis of intestinal epithelial cells against the inflammation.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 586
Author(s):  
Bin Yu ◽  
Qi Sang ◽  
Guoqing Pan ◽  
Chunfeng Li ◽  
Zeyang Zhou

The Toll-Spätzle pathway is a crucial defense mechanism in insect innate immunity, it plays an important role in fighting against pathogens through the regulation of antimicrobial peptide gene expression. Although Toll and Spätzle (Spz) genes have been identified in Bombyx mori, little is known regarding the specific Spz and Toll genes members involved in innate immunity. There is also limited direct evidence of the interaction between Spz and Toll. In this study, the dual-luciferase reporter assay results showed that BmToll11 and BmToll9–1 could activate both drosomycin and diptericin promoters in S2 cells. Furthermore, BmToll11, BmToll9–1, and five BmSpzs genes were found to be significantly upregulated in B. mori infected by Escherichia coli and Staphylococcus aureus. Additionally, the yeast two-hybrid assay results confirmed that BmSpz2, but not other BmSpzs, could interact with both BmToll11 and BmToll9–1. These findings suggest that the activated BmSpz2 can bind with BmToll11 and BmToll9–1 to induce the expression of AMPs after the silkworm is infected by pathogens.


2020 ◽  
Vol 50 (6) ◽  
pp. 282-291 ◽  
Author(s):  
Maryam Ali Mohammadie Kojour ◽  
Yeon Soo Han ◽  
Yong Hun Jo

2019 ◽  
Vol 49 (8) ◽  
pp. 339-353 ◽  
Author(s):  
In Seok Bang

2017 ◽  
Vol 4 (2) ◽  
pp. 170003 ◽  
Author(s):  
Waldan K. Kwong ◽  
Amanda L. Mancenido ◽  
Nancy A. Moran

Gut microbial communities can greatly affect host health by modulating the host's immune system. For many important insects, however, the relationship between the gut microbiota and immune function remains poorly understood. Here, we test whether the gut microbial symbionts of the honey bee can induce expression of antimicrobial peptides (AMPs), a crucial component of insect innate immunity. We find that bees up-regulate gene expression of the AMPs apidaecin and hymenoptaecin in gut tissue when the microbiota is present. Using targeted proteomics, we detected apidaecin in both the gut lumen and the haemolymph; higher apidaecin concentrations were found in bees harbouring the normal gut microbiota than in bees lacking gut microbiota. In in vitro assays, cultured strains of the microbiota showed variable susceptibility to honey bee AMPs, although many seem to possess elevated resistance compared to Escherichia coli . In some trials, colonization by normal gut symbionts resulted in improved survivorship following injection with E. coli . Our results show that the native, non-pathogenic gut flora induces immune responses in the bee host. Such responses might be a host mechanism to regulate the microbiota, and could potentially benefit host health by priming the immune system against future pathogenic infections.


Sign in / Sign up

Export Citation Format

Share Document