contraction force
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 36)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Cassio V. Ruas ◽  
Christopher Latella ◽  
Janet L. Taylor ◽  
G. Gregory Haff ◽  
Kazunori Nosaka

2021 ◽  
Vol 2011 (1) ◽  
pp. 012021
Author(s):  
Jiawei Fu ◽  
Yichen He ◽  
Siming Jiang ◽  
Zhongqi Tao ◽  
Yifan Wen ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ákos I. Fábián ◽  
Edömér Tassonyi ◽  
Vera Csernoch ◽  
Marianna Fedor ◽  
Tamás Sohajda ◽  
...  

Abstract Background Residual neuromuscular block at the end of surgery may compromise the patient’s safety. The risk of airway complications can be minimized through monitoring of neuromuscular function and reversal of neuromuscular block if needed. Effective reversal can be achieved with selective relaxant binding agents, however, sugammadex is the only clinically approved drug in this group. We investigated the concentration–response properties of a novel selective relaxant binding agent, carboxymethyl-γ-cyclodextrin for the reversal of neuromuscular block. We evaluated the hypothesis that it is equally potent for reversing neuromuscular block as sugammadex. Methods Phrenic nerve – hemidiaphragm tissue preparations were isolated from male Wistar rats and suspended in a tissue holder allowing electrical stimulation of the nerve and monitoring of muscle contraction force. Concentration–response relationships were constructed for the neuromuscular blocking agents rocuronium, pipecuronium, and vecuronium. The half-effective concentrations of sugammadex and carboxymethyl-γ-cyclodextrin for reversal of neuromuscular block were determined. Results The half effective concentrations (95% confidence interval, CI) were 7.50 (6.93–8.12) μM for rocuronium, 1.38 (1.33–1.42) μM for pipecuronium, and 3.69 (3.59–3.80) μM for vecuronium. The half effective concentrations (95% CI) of carboxymethyl-γ-cyclodextrin and sugammadex were 35.89 (32.67–39.41) μM and 3.67 (3.43–3.92) μM, respectively, for the reversal of rocuronium-induced block; 10.14 (9.61–10.70) μM and 0.67 (0.62–0.74) μM, respectively, for the reversal of pipecuronium-induced block; and 376.1 (341.9–413.8) μM and 1.45 (1.35–1.56) μM, respectively, for the reversal of vecuronium-induced block. Conclusions Carboxymethyl-γ-cyclodextrin is an effective, but less potent agent for reversal of neuromuscular block than sugammadex.


Author(s):  
Kenei Matsudaira ◽  
Hidetoshi Takahashi ◽  
Kayoko Hirayama-Shoji ◽  
Takuya Tsukagoshi ◽  
Thanh-Vinh Nguyen ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6448
Author(s):  
Mitchell J. George ◽  
Julia Litvinov ◽  
Kevin Aroom ◽  
Leland J. Spangler ◽  
Henry Caplan ◽  
...  

Myosin Light Chain (MLC) regulates platelet contraction through its phosphorylation by Myosin Light Chain Kinase (MLCK) or dephosphorylation by Myosin Light Chain Phosphatase (MLCP). The correlation between platelet contraction force and levels of MLC phosphorylation is unknown. We investigate the relationship between platelet contraction force and MLC phosphorylation using a novel microelectromechanical (MEMS) based clot contraction sensor (CCS). The MLCK and MLCP pair were interrogated by inhibitors and activators of platelet function. The CCS was fabricated from silicon using photolithography techniques and force was validated over a range of deflection for different chip spring constants. The force of platelet contraction measured by the clot contraction sensor (CCS) was compared to the degree of MLC phosphorylation by Western Blotting (WB) and ELISA. Stimulators of MLC phosphorylation produced higher contraction force, higher phosphorylated MLC signal in ELISA and higher intensity bands in WB. Inhibitors of MLC phosphorylation produced the opposite. Contraction force is linearly related to levels of phosphorylated MLC. Direct measurements of clot contractile force are possible using a MEMS sensor platform and correlate linearly with the degree of MLC phosphorylation during coagulation. Measured force represents the mechanical output of the actin/myosin motor in platelets regulated by myosin light chain phosphorylation.


2021 ◽  
Vol 102 (3) ◽  
pp. 329-334
Author(s):  
V V Valiullin ◽  
A E Khairullin ◽  
A A Eremeev ◽  
A Yu Teplov ◽  
A R Shaikhutdinova ◽  
...  

Aim. To study the dynamics of neuromotor regulation of the contractile function of fast and slow muscles in rodents during spinal shock by spinal cord transection at the level Тh11Тh12. Methods. The experiments were carried out on laboratory rats weighing 140180 g. The animals were divided into two groups: Control (8 rats) and Spinal shock (6 rats). The lower leg muscles, m. soleus and m. extensor digitorum longus (m. EDL), were dissected by partially isolating without disrupting the connection with the body's circulatory system. The sciatic nerve was stimulated with single electrical impulses (10 V, 0.5 ms). Contractions of both muscles caused by electrical stimulation of the sciatic nerve before and after the injection of the substances into the femoral artery tubocurarine (1 mM) or norepinephrine (10 mM) were recorded in animals of both groups. After spinalization, muscle contractions were re-recorded during electrical stimulation of the sciatic nerve before and 10 minutes after the injection of tubocurarine or noradrenaline into the femoral artery in the same concentrations. Results. After spinalization of the animal, the contraction force of the muscle m. EDL fibers increased to 0.430.03 g (p=0.040), but the temporal parameters remained unchanged. M. soleus, on the contrary, showed a decrease in the contraction time to 0.0530.005 s (p=0.045), and no change in the contraction force was observed under these conditions. Intra-arterial administration of norepinephrine in the control group resulted in an increase of m. soleus contractions up to 1.210.17 g (p=0.048), and m. EDL up to 0.570.07 g (p=0.043). The administration of norepinephrine in spinalized animals caused an increase in the contraction of m. soleus up to 1.210.09 g (p=0.047), and m. EDL up to 0.660.05 g (p=0.043). The blocker of postsynaptic cholinergic receptors tubocurarine administration reduced the force of contraction of both muscle types in both control [m. soleus up to 0.390.03 g (p=0.039), m. EDL up to 0.110.02 g (p=0.042)] and spinalized [m. soleus up to 0.340.05 g (p=0.039), m. EDL up to 0.150.04 g (p=0.040)] animals. Conclusion. The data obtained demonstrate the presence of significant differences in the mechanisms of control of contractile activity in the fast and slow skeletal muscles of warm-blooded animals; the persistence of the similar effect of the basic modulators on the contraction of both muscles with such a striking reaction to spinalization highlights the contribution of neurotrophic control to the functioning of fast and slow motor units.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 503
Author(s):  
Leighton Izu ◽  
Rafael Shimkunas ◽  
Zhong Jian ◽  
Bence Hegyi ◽  
Mohammad Kazemi-Lari ◽  
...  

The heart has two intrinsic mechanisms to enhance contractile strength that compensate for increased mechanical load to help maintain cardiac output. When vascular resistance increases the ventricular chamber initially expands causing an immediate length-dependent increase of contraction force via the Frank-Starling mechanism. Additionally, the stress-dependent Anrep effect slowly increases contraction force that results in the recovery of the chamber volume towards its initial state. The Anrep effect poses a paradox: how can the cardiomyocyte maintain higher contractility even after the cell length has recovered its initial length? Here we propose a surface mechanosensor model that enables the cardiomyocyte to sense different mechanical stresses at the same mechanical strain. The cell-surface mechanosensor is coupled to a mechano-chemo-transduction feedback mechanism involving three elements: surface mechanosensor strain, intracellular Ca2+ transient, and cell strain. We show that in this simple yet general system, contractility autoregulation naturally emerges, enabling the cardiomyocyte to maintain contraction amplitude despite changes in a range of afterloads. These nontrivial model predictions have been experimentally confirmed. Hence, this model provides a new conceptual framework for understanding the contractility autoregulation in cardiomyocytes, which contributes to the heart’s intrinsic adaptivity to mechanical load changes in health and diseases.


Author(s):  
Mircea Hulea ◽  

High accuracy in modelling the behavior of human hand and fingers is obtained using control devices of high biological plausibility. Such devices are typically based on neural networks and are able to control in parallel multiple artificial muscles. This paper presents the structure of an electronic spiking neural network that was implemented to control the force of two opposing fingers of an anthropomorphic hand. In order to increase the level of bio-inspiration, the artificial muscles are implemented using shape memory alloy wires which actuates by contraction as the natural muscles. Moreover, the contraction force of the SMA actuators is directly related to the spiking frequency that is generated by the artificial neurons. The results show that using few excitatory and inhibitory neurons the neural network is able to set and regulate the contraction force of the SMA actuators.


Author(s):  
Callum G. Brownstein ◽  
Loïc Espeit ◽  
Nicolas Royer ◽  
Paul Ansdell ◽  
Jakob Škarabot ◽  
...  

Cervicomedullary stimulation provides a means of assessing motoneuron excitability. Previous studies demonstrated that during low-intensity sustained contractions, small cervicomedullary evoked potentials (CMEPs) conditioned using transcranial magnetic stimulation (TMS-CMEPs) are reduced, whilst large TMS-CMEPs are less affected. Since small TMS-CMEPs recruit motoneurons most active during low-intensity contractions while large TMS-CMEPs recruit a high proportion of motoneurons inactive during the task, these results suggest that reductions in motoneuron excitability could be dependent on repetitive activation. To further test this hypothesis, this study assessed changes in small and large TMS-CMEPs across low- and high-intensity contractions. Twelve participants performed a sustained isometric contraction of the elbow flexor for 4.5 min at the electromyography (EMG) level associated with 20% maximal voluntary contraction force (MVC; low-intensity) and 70% MVC (high-intensity). Small and large TMS-CMEPs with amplitudes of ~15 and ~50% Mmax at baseline, respectively, were delivered every minute throughout the tasks. Recovery measures were taken at 1, 2.5 and 4-min post-exercise. During the low-intensity trial, small TMS-CMEPs were reduced at 2-4 min (p≤0.049) by up to −10% Mmax, while large TMS-CMEPs remained unchanged (p≥0.16). During the high-intensity trial, small and large TMS-CMEPs were reduced at all time-points (p<0.01) by up to −14% and −33% Mmax, respectively, and remained below baseline during all recovery measures (p≤0.02). TMS-CMEPs were unchanged relative to baseline during recovery following the low-intensity trial (p≥0.24). These results provide novel insight into motoneuron excitability during and following sustained contractions at different intensities, and suggest that contraction-induced reductions in motoneuron excitability depend on repetitive activation.


Sign in / Sign up

Export Citation Format

Share Document