hydrogen transport
Recently Published Documents


TOTAL DOCUMENTS

480
(FIVE YEARS 48)

H-INDEX

43
(FIVE YEARS 4)

CORROSION ◽  
10.5006/3961 ◽  
2022 ◽  
Author(s):  
Lisa Blanchard ◽  
Kasra Sotoudeh ◽  
James Hesketh ◽  
Gareth Hinds ◽  
Hongbiao Dong

The quantified microstructural analysis carried out on a wrought and a hot isostatically-pressed (HIP) UNS S31803 duplex stainless steel (DSS) in the Part 1 publication of this study 1, established the significance of the three-dimensional (3D) distribution and morphology/geometry of the ferrite and austenite phases on hydrogen transport through two DSS product forms. This paper is a follow-on to Part 1, and focuses on the role of the other two key, interrelated components of hydrogen-induced stress cracking (HISC): stress/strain, and hydrogen. For this purpose, experimental hydrogen permeation measurements, and environmental fracture toughness testing (i.e. J R-curve testing) using conventional and non-standard single-edge notched bend test specimens were used. These particularly enabled interpretation of the hydrogen permeation and transport test data, and evaluation of suitability of environmental fracture toughness test methods for the assessment of resistance to HISC in DSSs. The latter is discussed, both from laboratory and component integrity perspectives, in the context of the findings from the 3D microstructural characterisation of the two phases, the role of stress raisers and their severity, and hydrogen transport through the bulk and from the surface.


CORROSION ◽  
10.5006/3960 ◽  
2022 ◽  
Author(s):  
Lisa Blanchard ◽  
Kasra Sotoudeh ◽  
H Toda ◽  
K. Hirayama ◽  
Hongbiao Dong

This paper is associated with a larger programme of research, studying the resistance to hydrogen-induced stress cracking (HISC) of a wrought and a hot isostatically-pressed (HIP) UNS S31803 duplex stainless steel (DSS), with respect to both the independent and interactive effects of the three key components of HISC: microstructure, stress/strain, and hydrogen. In the first part presented here, several material properties such as the three-dimensional (3D) microstructure, distribution and morphology/geometry of the two phases, i.e. ferrite and austenite, and their significance on hydrogen transport have been determined quantitatively, using X-ray computed tomography (CT) microstructural data analysis and modelling. This provided a foundation for the study to compare resistance to HISC initiation and propagation of the two DSSs with differing microstructures, using hydrogen permeation measurements, environmental fracture toughness testing of single-edge notched bend test specimens, in the Part 2 paper of this study [1].


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 778
Author(s):  
Abdulrahman Alraeesi ◽  
Tracy Gardner

Palladium and palladium alloy membranes are superior materials for hydrogen purification, removal, or reaction processes. Sieverts’ Law suggests that the flux of hydrogen through such membranes is proportional to the difference between the feed and permeate side partial pressures, each raised to the 0.5 power (n = 0.5). Sieverts’ Law is widely applied in analyzing the steady state hydrogen permeation through Pd-based membranes, even in some cases where the assumptions made in deriving Sieverts’ Law do not apply. Often permeation data are fit to the model allowing the pressure exponent (n) to vary. This study experimentally assessed the validity of Sieverts’ Law as hydrogen was separated from other gases and theoretically modelled the effects of pressure and temperature on the assumptions and hence the accuracy of the 0.5-power law even with pure hydrogen feed. Hydrogen fluxes through Pd and Pd-Ag alloy foils from feed mixtures (5–83% helium in hydrogen; 473–573 K; with and without a sweep gas) were measured to study the effect of concentration polarization (CP) on hydrogen permeance and the applicability of Sieverts’ Law under such conditions. Concentration polarization was found to dominate hydrogen transport under some experimental conditions, particularly when feed concentrations of hydrogen were low. All mixture feed experiments showed deviation from Sieverts’ Law. For example, the hydrogen flux through Pd foil was found to be proportional to the partial pressure difference (n ≈ 1) rather than being proportional to the difference in the square root of the partial pressures (n = 0.5), as suggested by Sieverts’ Law, indicating the high degree of concentration polarization. A theoretical model accounting for Langmuir adsorption with temperature dependent adsorption equilibrium coefficient was made and used to assess the effect of varying feed pressure from 1–136 atm at fixed temperature, and of varying temperature from 298 to 1273 K at fixed pressure. Adsorption effects, which dominate at high pressure and at low temperature, result in pressure exponents (n) values less than 0.5. With better understanding of the transport steps, a qualitative analysis of literature (n) values of 0.5, 0.5 < n < 1, and n > 1, was conducted suggesting the role of each condition or step on the hydrogen transport based on the empirically fit exponent value.


2021 ◽  
Author(s):  
Erling Østby ◽  
Bjørn-Andreas Hugaas ◽  
Agnes Marie Horn

Abstract Considering the vast number of articles that have been published during the last 150 years related to hydrogen embrittlement and the multiple attempts to explain the governing mechanisms, it is evident that hydrogen’s effect on mechanical properties in steel is still a controversial topic. This little atom has even by some authors been referred to as the “little devil”. We do not intend to explore this particular description of hydrogen any further. However, we would like to shed some light on the key technical aspects we believe need to be further scrutinized and understood to ensure that the decision-makers have sufficiently reliable data available to decide whether hydrogen gas can be safely transported in new or existing offshore pipelines at an acceptable cost.


Sign in / Sign up

Export Citation Format

Share Document