wood cellulose
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 31)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Chih-Hui Chang ◽  
Wenjie Cai ◽  
Jer-Horng Lin ◽  
Shing-Jong Huang ◽  
Ying-Chung Jimmy Lin ◽  
...  

Wood cellulose microfibrils (CMFs) are the most abundant organic substance on earth, but their nanostructures are poorly understood. There are controversies regarding the glucan chain number (N) of CMFs during initial synthesis and whether they become fused afterwards. Here, we combined small-angle X-ray scattering (SAXS), solid-state nuclear magnetic resonance (ssNMR) and X-ray diffraction (XRD) analyses to resolve these controversies. We successfully developed SAXS measurement methods for the cross-section aspect ratio and area of the crystalline-ordered CMF core, which showed higher density than the semi-disordered shell. The 1:1 aspect ratio suggested that CMFs remain mostly segregated, not fused. The area measurement revealed the chain number in the core zone (Ncore). The ratio of ordered cellulose over total cellulose, termed Roc, was determined by ssNMR. Using the formula N = Ncore / Roc, we found that the majority of wood CMFs contain 24 chains, conserved between gymnosperm and angiosperm trees. The average wood CMF has a crystalline-ordered core of ~2.2 nm diameter and a semi-disordered shell of ~0.5 nm thickness. In naturally and artificially aged wood, we only observed CMF aggregation (contact without crystalline continuity) but not fusion (forming conjoined crystalline unit). This further argued against the existence of partially fused CMFs in new wood, overturning the recently proposed 18-chain fusion hypothesis. Our findings are important for advancing wood structural knowledge and more efficient utilization of wood resources in sustainable bio-economies.


2022 ◽  
Author(s):  
Shaoqiu Ke ◽  
Di Xie ◽  
Kai Zhang ◽  
Fangchao Cheng ◽  
Yiqiang Wu

Herein, we demonstrate a structure-enabled strategy to construct an ultrastable, high-performance, ultraflexible all-in-one supercapacitor with a one-piece wood cellulose network/polyaniline/multiwalled carbon nanotube composite as both the electrodes and the separator....


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Limei Ma

The integration of fiber materials into modern pottery creation is an attempt to explore its boundaries as a specific material and art form. Fiber materials, such as fabric and paper, are not resistant to high temperatures, and the clay attached to them can retain the surface texture, texture, and original three-dimensional form of the fiber materials intact during the kiln firing process, making up for the defects of single material molding and maintaining the visual effect of ultrathin and highly translucent works. The light source inside the work is more conducive to creating a specific artistic atmosphere. The purpose of this paper is to explore how fiber materials become the basis of ceramic works and the source of decorative expression, so that this expression and process can be systematically analyzed and interpreted in the application of ceramic art creation. Along with the rapid development of nanotechnology, electronics, and optical technology, people’s clothing fabrics have been increasing in demand in terms of function and appearance. This paper focuses on the research and development of fiber textiles from the field of science and technology and discusses the current status of fiber textiles and the possibility of combining fiber art with science and technology. In this paper, wood cellulose-multiwalled carbon nanotube/wood cellulose composite films were prepared, as well as wood cellulose films and wood cellulose/multiwalled carbon nanotube composite films. The optimal reaction time for the preparation of the films was 2 h, and the optimal reaction temperature was 70°C. Experimental results show that the dispersibility of multilayer carbon nanotubes in wood cellulose multilayer carbon nanotubes/wood cellulose composite films in wood cellulose multilayer carbon nanotubes composite films is superior. If the amount of multilayered carbon nanotubes was 3 wt%, the fracture point extension and accessibility of the wood cellulose multilayer carbon nanotubes/wood cellulose composite film are 12.2% and 106.7 MPa, respectively. It is 93.7%, respectively. 10.7% is higher than wood cellulose/multilayered carbon nanotube composite films.


2021 ◽  
Author(s):  
Kazuho Daicho ◽  
Kayoko Kobayashi ◽  
Shuji Fujisawa ◽  
Tsuguyuki Saito

Abstract Crystallite refers to a single crystalline grain in crystal aggregates, and multiple crystallites form a grain boundary or the inter-crystallite interface. A grain boundary is a structural defect that hinders the efficient directional transfer of mechanical stress or thermal phonons in crystal aggregates. We observed that grain boundaries within an aggregate of a-few-nanometers-wide fibrillar crystallites of wood cellulose were crystallized by enhancing their inter-crystallite interactions; multiple crystallites were coupled into single fusion crystals without passing through a melting or dissolving state. Accordingly, the crystallinity of wood cellulose, which has been considered irreversible once decreased, was significantly enhanced, and the thermal energy transfer in the aggregate was improved. Other fibrillar crystallites of crab shell chitin also showed a similar fusion phenomenon by enhancing the inter-crystallite interactions. These findings imply that such crystallite fusion naturally occurs in biological structures with network skeletons of aggregated fibrillar crystallites.


2021 ◽  
Author(s):  
Kazuho Daicho ◽  
Kayoko Kobayashi ◽  
Shuji Fujisawa ◽  
Tsuguyuki Saito

Abstract Crystallite refers to a single crystalline grain in crystal aggregates, and multiple crystallites form a grain boundary or the inter-crystallite interface. A grain boundary is a structural defect that hinders the efficient directional transfer of mechanical stress or thermal phonons in crystal aggregates. We observed that grain boundaries within an aggregate of a-few-nanometers-wide fibrillar crystallites of wood cellulose were crystallized by enhancing their inter-crystallite interactions; multiple crystallites were coupled into single fusion crystals without passing through a melting or dissolving state. Accordingly, the crystallinity of wood cellulose, which has been considered irreversible once decreased, was significantly enhanced, and the thermal energy transfer in the aggregate was improved. Other fibrillar crystallites of crab shell chitin also showed a similar fusion phenomenon by enhancing the inter-crystallite interactions. These findings imply that such crystallite fusion naturally occurs in biological structures with network skeletons of aggregated fibrillar crystallites.


2021 ◽  
Vol 11 (14) ◽  
pp. 6425
Author(s):  
Hidenori Takahashi ◽  
Shinya Omori ◽  
Hideyuki Asada ◽  
Hirofumi Fukawa ◽  
Yusuke Gotoh ◽  
...  

Cellulose nanofibre (CNF), a material composed of ultrafine fibres of wood cellulose fibrillated to nano-order level, is expected to be widely used because of its excellent properties. However, in the field of geotechnical engineering, almost no progress has been made in the development of techniques for using CNFs. The authors have focused on the use of CNF as an additive in cement treatment for soft ground, where cement is added to solidify the ground, because CNF can reduce the problems associated with cement-treated soil. This paper presents the results of a study on the method of mixing CNF, the strength and its variation obtained by adding CNF, and the change in permeability. CNF had the effect of mixing the cement evenly and reducing the variation in the strength of the treated soil. The CNF mixture increased the strength at the initial age but reduced the strength development in the long term. The addition of CNF also increased the flexural strength, although it hardly changed the permeability.


2021 ◽  
Author(s):  
Junji Nemoto ◽  
Keiichi Nakamata

Abstract Vulcanized fiber is an all-cellulose material made from cotton and/or wood cellulose after zinc chloride treatment. This material was invented in the UK in the mid-19th century and is used because of its excellent characteristics, such as impact resistance and electrical insulation. Recent research revealed that the vulcanized fiber strength can be attributed to the chemically defibrillated cellulose nanofibers. In this report, we describe the history and structural characteristics of vulcanized fibers and introduce a new aspect of zinc chloride treatment.


Author(s):  
Zhiqiang Ou ◽  
Qi Zhou ◽  
Xin Rao ◽  
Haifeng Yang ◽  
Chunqing Huo ◽  
...  

Waste rubber wood (RW) is the castoff of rubber plantation with abundant reservation but without high-value utilization. In this study, cellulose with high purity has been efficiently isolated from waste RW and further processed into cellulose nanocrystals. By means of acetylation, more hydrophobic cellulose-based products, namely acetylated rubber wood cellulose (Ac–RWC) and acetylated rubber wood cellulose nanocrystals (Ac–RW–CNC) had been attempted as reinforcing fillers for fabricating two series of PLA-based composite films via spin coating instead of currently prevailing melt compounding technique. To ensure a uniformed dispersion of fillers in PLA matrix, the addition of reinforcing filler should be equal to or less than 5% based on the film dry weight. Compared with pure PLA film, the Ac–RWC reinforced PLA composite films are more thermally stable, while the Ac–RW–CNC reinforced PLA composite films on the other hand exhibit more enhanced performance in mechanical properties and the degree of crystallinity. The highest tensile strength (55.0 MPa) and Young’s modulus (3.9 GPa) were achieved for 5%Ac–RW–CNC/PLA composite film.


Nano Energy ◽  
2021 ◽  
Vol 81 ◽  
pp. 105637
Author(s):  
Chenyuan Zhang ◽  
Jilong Mo ◽  
Qiu Fu ◽  
Yanhua Liu ◽  
Shuangfei Wang ◽  
...  

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2184-2187
Author(s):  
Carmen-Alice Teacă

Trees provide one of the most versatile biomass resources for many applications, namely wood. The chemical composition of wood determines its properties, being of real significance for its further capitalization, and depending on many factors. In nature, trees’ biomass is subjected to considerable pollution stress with further alteration of their normal growth conditions. Some correlations have been established between wood’s chemical composition and its further exploitation accordingly to particular circumstances of climate changes and pollution. The content of the main structural polymers from wood, cellulose and lignin, as well other components undergoes notable changes under the influence of pollution phenomena.


Sign in / Sign up

Export Citation Format

Share Document