molecular area
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 8)

H-INDEX

18
(FIVE YEARS 1)

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 84
Author(s):  
Juan Wang

Amphotericin B (AmB) is an antifungal drug that rarely develops resistance. It has an affinity with the cholesterol on mammalian cell membranes, disrupting the structure and function of the membranes, which are also affected by potassium ions. However, the mechanism is unclear. In this paper, the Langmuir monolayer method was used to study the effects of potassium ions on the surface pressure–mean molecular area of isotherms, elastic modulus and the surface pressure–time curves of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol (DPPC/Chol) monolayer and a DPPC/Chol/AmB monolayer. The morphology and thickness of the Langmuir–Blodgett films were studied via atomic force microscopy. The results showed that AmB can increase the mean molecular area of the DPPC/Chol mixed monolayer at low pressures (15 mN/m) but reduces it at high pressures (30 mN/m). The potassium ions may interfere with the effect of AmB in different ways. The potassium ions can enhance the influence of AmB on the stability of monolayer at low surface pressures, but weaken it at high surface pressures. The potassium ions showed significant interference with the interaction between AmB and the cholesterol-enriched region. The results are helpful for us to understand how the effect of amphotericin B on the phospholipid membrane is interfered with by potassium ions when amphotericin B enters mammalian cell membrane.


Author(s):  
Juan Wang ◽  
Shun Feng ◽  
Jie Liu ◽  
Rui-Lin Liu

Quantum dots (QDs) as a promising optical probe have been widely used for in vivo biomedical imaging; especially enormous efforts recently have focused on the potential toxicity of QDs to the human body. The toxicological effects of the representative InP/ZnS QDs as a cadmium-free emitter are still in the early stage and have not been fully unveiled. In this study, the DPPC/DPPG mixed monolayer was used to simulate the lung surfactant monolayer. The InP/ZnS-COOH QDs and InP/ZnS-NH2 QDs were introduced to simulate the lung surfactant membrane’s environment in the presence of InP/ZnS QDs. The effects of InP/ZnS QDs on the surface behavior, elastic modulus, and stability of DPPC/DPPG mixed monolayer were explored by the surface pressure-mean molecular area isotherms and surface pressure-time curves. The images observed by Brewster angle microscope and atomic force microscope showed that the InP/ZnS QDs affected the morphology of the monolayer. The results further demonstrated that the InP/ZnS QDs coated with different surface groups can obviously adjust the mean molecular area, elastic modulus, stability, and microstructure of DPPC/DPPG mixed monolayer. Overall, this work provided useful information for in-depth understanding of the effects of the −COOH or −NH2 group coated InP/ZnS QDs on the surface of lung surfactant membrane, which will help scientists to further study the physiological toxicity of InP/ZnS QDs to lung health.


2020 ◽  
Vol 97 (11) ◽  
pp. 3937-3947
Author(s):  
Chulkyu Park ◽  
Chang Youn Lee ◽  
Hun-Gi Hong

2020 ◽  
Vol 30 (4) ◽  
pp. 505-506
Author(s):  
Julia M. Devterova ◽  
Mikhail E. Sokolov ◽  
Vladimir Yu. Buz’ko ◽  
Irina N. Repina ◽  
Peter S. Rudnov ◽  
...  

2020 ◽  
Vol 56 (95) ◽  
pp. 15076-15079
Author(s):  
Qing Ren ◽  
Feiwu Chen

The molecular area of a surfactant in aqueous solution at saturation was first calculated without the Gibbs equation.


Scanning ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Zhang Lei ◽  
Sun Runguang ◽  
Hao Changchun ◽  
Yang Huihui ◽  
Hu Chengxi

To investigate the stability and dynamic characteristics of monolayer adsorbed on unsaturated lipid dioleoylphosphatidylcholine (DOPC) with varying concentrations of myelin basic protein (MBP), the system is studied by applying Langmuir technique and making atomic force microscope (AFM) observation, which is based on the mass conservation equation analysis method referred to in the thermodynamics theory. As indicated by surface pressure-mean molecular area (π−A) and surface pressure-adsorption time (π−T) isotherms, the physical properties of monolayer derived from the interaction of varying concentrations of MBP with liquid crystalline unsaturated lipid DOPC molecules were qualitatively studied. As revealed by surface morphology analysis with AFM, the micro region was expanded as the concentration of MBP in the subphase was on the increase, suggesting that hydrophobic interactions led to the MBP insertion, thus causing accumulation of the MBP on the surface of the monolayer. Experimental results have demonstrated that the partition coefficient of the interaction between MBP and unsaturated phospholipid DOPC and the molecular area of MBP adsorbed on the monolayer film was calculated using the mass conservation equation. In addition, not only does the varying concentration of MBP in the subphase exerts significant effects on the arrangement and conformation of DOPC monolayer, it also has certain guiding significance to exploring the structural changes to biofilm supramolecular aggregates as well as the pathogenesis and treatment of related diseases.


2018 ◽  
Author(s):  
Sara D. Forestieri ◽  
Sean M. Staudt ◽  
Thomas M. Kuborn ◽  
Katharine Faber ◽  
Christopher R. Ruehl ◽  
...  

Abstract. Surface active compounds present in aerosols can increase their cloud condensation nuclei (CCN) activation efficiency by reducing the surface tension (σ) in the growing droplets. However, the importance of this effect is poorly constrained by measurements. Here we present estimates of droplet surface tension near the point of activation derived from direct measurement of droplet diameters using a continuous flow stream-wise thermal gradient chamber (CFSTGC). The experiments used sea spray aerosol mimics composed of NaCl coated by varying amounts of (i) oleic acid, palmitic acid or myristic acid, (ii) mixtures of palmitic acid and oleic acid, and (iii) oxidized oleic acid. Significant reductions in σ relative to that for pure water were observed for these mimics at relative humidity (RH) near activation (~ 99.9 %) when the coating was sufficiently thick. The calculated surface pressure (π = σH2O − σobserved) values for a given organic compound or mixture collapse onto one curve when plotted as a function of molecular area for different NaCl seed sizes and measured RH. The observed critical molecular area (A0) for oleic acid determined from droplet growth was similar to that from bulk experiments conducted in a Langmuir trough. However, the observations presented here suggest that oleic acid in microscopic droplets may exhibit larger π values during monolayer compression. For myristic acid, the observed A0 compared well to bulk experiments on a fresh subphase, for which dissolution has an important impact. A significant kinetic limitation to water uptake was observed for NaCl particles coated with pure palmitic acid, likely as a result of palmitic acid being able to form a solid film. However, for binary palmitic acid-oleic acid mixtures there was no evidence of a kinetic limitation to water uptake. Oxidation of oleic acid had a minor impact on the magnitude of the surface tension reductions observed, potentially leading to a slight reduction in the effect compared to pure oleic acid. A cloud condensation nuclei (CCN) counter was also used to assess the impact on critical supersaturations of the substantial σ reductions observed at very high RH. For the fatty acid-coated NaCl particles, when the organic fraction (εorg) was > 0.90 small depressions in critical supersaturation were observed. However, when εorg 


Scanning ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Zhang ◽  
Changchun Hao ◽  
Guoqing Xu ◽  
Runguang Sun

Predicting the mechanism of MBP binding to cholesterol is meaningful in understanding how MBP participate in lateral membrane organization. The interaction of MBP with cholesterol monolayer was investigated at three surface pressures on 10 mM Tris-HCl buffer with the different concentrations of MBP. The results show that π-A isotherms shift to larger molecular area at all pressures. By means of analyzing π-T curves, a surface pressure increase was obtained. Results indicated that the greater the protein concentration in the subphase, the larger the increase of surface pressure. In addition, changes in monolayer surface morphology and domain formation were performed by AFM. These results provide more direct and convincing evidence for the MBP interaction with cholesterol. The MBP-cholesterol interaction suggests a significant concentrations and surface pressure dependence and is probably governed by hydrogen bonds. The date presented could help to understand at least one of the molecular mechanisms through which MBP affects lateral organization of the cholesterol membrane.


Sign in / Sign up

Export Citation Format

Share Document