pump mode
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 48)

H-INDEX

16
(FIVE YEARS 5)

Author(s):  
D.A. Tikhomirov ◽  
◽  
A.V. Khimenko ◽  
A.V. Kuzmichev ◽  

A functional and process flow diagram of an energy-saving floor heating panel using a thermoelectric assembly operating in a heat pump mode has been developed. The technique and calculation of the main heat-and-power parameters of this installation are presented. Studies of a working prototype of a floor heating panel, which have shown the high energy efficiency of the installation being developed, have been performed. It is shown that energy saving is about 15% in comparison with the serially used equipment for local heating of young animals.


2021 ◽  
Vol 66 (8) ◽  
pp. 674
Author(s):  
D. Ayehu

We investigate the statistical and quadrature squeezings, as well as the entanglement properties, of a two-mode light generated by non-degenerate parametric oscillations coupled to a two-mode squeezed vacuum reservoir, by employing the solutions of the quantum Langevin equations. It is found that the two-mode light shows the two-mode squeezing and entanglement for all values of the time. Moreover, it is observed that the squeezed vacuum reservoir and the growing amplitude of the pump mode enhance the degrees of two-mode squeezing and entanglement. We have also shown that the amounts of squeezing and entanglement are significant in a region, where the mean photon number is higher, and the photon number correlation is lower.


Author(s):  
Ran Tao ◽  
Puxi Li ◽  
Zhifeng Yao ◽  
Ruofu Xiao

Centrifugal impeller is usually designed for water pumping. Fluid get energy from impeller but also lose energy when passing through it. To improve the efficiency and have a better operation stability, it is necessary to understand the flow energy dissipation in centrifugal impeller in pump mode. In this case, a thermodynamic analysis is conducted on a model centrifugal pump unit based on computational fluid dynamics (CFD) simulation. Typical performance curve is found with a positive-slope efficiency curve and a negative-slope head curve. With the decreasing of flow rate, both the impeller head and the flow energy dissipation (FED) will rise up. The FED is found related to the flow regime. The complex undesirable flow pattern induces high FED under off-design conditions especially at very small partial-load. Based on the visualization, FED is found with two main sources including the wall friction and the flow interaction. At over-load and design-load, the wall friction induced FED is dominant. With the decreasing of flow rate, flow interaction induced FED becomes dominant. The typical strong FED sites are found related to the striking, separation, merging and interaction of both smooth flow and vortical flow. The FED analysis will correlate the pump performance estimation and guide the design.


Author(s):  
Jinhui Ouyang ◽  
Yongyao Luo ◽  
Ran Tao

Blade leaning is commonly seen in the runner design of reversible pump turbines which operate under varying conditions. However, there is no certain law in determine the leaning mode and level. Considering performance, hydraulic excitation and structural response, five runners with strong rotational (RL+), rotational (RL), strong counter-rotational (CL+), counter-rotational (CL) and without (NL) blade leaning are compared under high-efficiency condition in pump mode and turbine mode. The head, efficiency, internal flow pressure pulsation and runner stress are comparatively studied. Among the five runners, CL+ runner is found has the highest efficiency as pump when RL+ runner has the highest efficiency as turbine. Pressure pulsation results show that the rotor-stator interaction region is the strongest pulsation source especially for runner and blade frequencies. In pump mode, pressure pulsation intensity decreases when blade leaning mode gradually changes from rotational to counter-rotational. In turbine mode, the NL runner has the strongest pressure pulsation intensity in runner and guide vane. Both rotational and counter-rotational leaning will reduce pressure pulsation. Velocity contours indicate that blade leaning will affect the velocity uniformity especially along rotational direction and cause stronger or weaker local hydraulic excitation. Under hydraulic excitation, RL+ runner suffers the highest equivalent stress as pump while CL runner suffers the highest equivalent stress as turbine. From rotational to counter-rotational blade leaning, the maximum stress moves on the crown from low pressure side to high pressure side. Considering hydraulic excitation and structural response, the strong counter-rotational leaning blade is found better in reversible runner design.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 798
Author(s):  
Yanqiu Du ◽  
Tongyu Dai ◽  
Hui Sun ◽  
Hui Kang ◽  
Hongyang Xia ◽  
...  

We describe comparatively cryogenically cooled Tm, Ho: GdVO4 lasers with an emission wavelength of 2.05 μm under continuous wave and pulse operating mode. By varying the transmittance of output couplers to be 0.40 for a continuous wave laser, the maximum output power of 7.4 W was generated with a slope efficiency of 43.3% when the absorbed pump power was increased to 18.7 W. For passively Q-switched lasers, the output characteristics were researched through altering pump mode radius. When the pump mode radius focused into the Tm, Ho: GdVO4 center equaled near 600 μm, the peak power was increased to be the maximum value of 9.9 kW at the absorbed pump power of 11.8 W. The pulse energy of 0.39 mJ was achieved at the same absorbed pump power with repetition of 5.7 kHz.


2021 ◽  
Vol 1985 (1) ◽  
pp. 012044
Author(s):  
Kai Lin ◽  
Funan Chen ◽  
Chao Wang ◽  
Huili Bi ◽  
Yongyao Luo ◽  
...  

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Guopeng Zhao ◽  
Yongxin Zhang ◽  
Jiyun Ren

In this paper, the control strategies and their characteristics when applied to the doubly-fed variable-speed pumped storage unit in generating mode and pump mode are discussed. The composition of doubly fed variable-speed pumped storage unit is introduced, and the mathematical model of every component is proposed. Two control strategies of the unit are introduced. One is the power priority control strategy and the other is the speed priority control strategy. Then, the control block diagrams of the two control strategies in the generating mode and the pump mode are established, and the parameters of the unit in each control strategy are designed. The two control strategies are simulated in power generation and pumping conditions. Finally, the conclusion that power priority strategy has a better effect on power control is obtained.


Sign in / Sign up

Export Citation Format

Share Document