surface microhardness
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 82)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 9 (12) ◽  
pp. 148
Author(s):  
Mauro Pascolutti ◽  
Dileusa de Oliveira

Background: Traditional bleaching agents based on hydrogen peroxide (HP) or carbamide peroxide (CP) have adverse soft and hard tissue effects. Objectives: This study tested a novel formulation of phthalimidoperoxycaproic acid (PAP) with additives to optimise its safety and effectiveness. Methods: A novel gel (PAP+) was formulated. Laboratory studies assessed effects of six 10-minute exposures to PAP+ vs. commercial CP and HP gels, using surface profilometry and microhardness. The effectiveness of PAP+ in vitro against complex polyphenol stains on enamel was compared to 6% HP. Results: Unlike HP gels, PAP+ gel did not erode enamel. Unlike both CP and HP gels, PAP+ gel did not reduce the surface microhardness of enamel. PAP+ gel on used on polyphenol stains was superior to 6% HP. In this model, six repeated 10-minute treatments with PAP+ gel could improve the shade by approximately eight VITA® Bleachedguide shades. Conclusions: These laboratory results support the safety and effectiveness of this new PAP formula and its use as an alternative to CP and HP with superior safety and effectiveness.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012200
Author(s):  
P Palkanov ◽  
V Koshuro ◽  
A Fomin

Abstract The study results of the structure and microhardness of the surface layer of high-speed tool steel after induction chemical-thermal treatment in a gaseous nitrogen-containing medium at a temperature of 900–1100 °C were presented. Due to the strengthening treatment of products a gradient diffusion nitride layer with a thickness of about 200 μm and a surface microhardness of 1950±70 HV1 98 was formed.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Hoda R. Riad ◽  
Osama S. Mosallam ◽  
Alaa H. Salama ◽  
Lamiaa M. Moharam ◽  
Mohamed H Zaazou ◽  
...  

Abstract Objective Objective was to investigate the effect of NovaMin toothpaste and two experimental toothpastes on surface microhardness of hypersensitive dentin. Methods Eighty specimens were prepared and divided randomly into eight groups (n = 10/group) according to the tested toothpastes (NovaMin, moringa and propolis toothpastes) and the acidic challenge (with or without 6% citric acid challenge). Enamel surfaces were removed, and the dentin surfaces were exposed on which the three tested toothpastes were brushed twice a day for 1 week using an electric toothbrush, then a 4-d citric acid cycling model with pH 5 was performed. The prepared specimens were stored in artificial saliva until the microhardness test was performed. Statistical analysis was done using One-way ANOVA followed by Tukey post hoc test. Results NovaMin-containing toothpaste showed an increased dentin surface microhardness following a week of twice daily brushing compared to other groups. However, NovaMin-containing toothpaste showed the highest microhardness values following pH cycling with citric acid of pH 5 compared to other tested groups. Conclusions NovaMin-containing toothpaste showed a partial recovery of dentin microhardness at pH 5 during the acidic challenge. Moreover, propolis- and moringa-containing toothpastes had an insignificant effect on dentin surface microhardness with and without citric acid challenge.


2021 ◽  
Vol 943 (1) ◽  
pp. 012019
Author(s):  
G S Teo ◽  
K W Liew ◽  
C K Kok

Abstract In this study, the surface microhardness, friction and wear performance of recycled aluminium alloy 6063 were improved via an energy-efficient surface engineering technique known as friction stir processing. Different tool rotational speeds of 1200 rpm, 1400 rpm, 1600 rpm, 1800 rpm and 2000 rpm with a fixed feed rate of 30 mm/min were used to process the recycled aluminium alloy 6063. The effects of rotational speed on the microstructure, surface microhardness and tribological performance of the samples were analyzed. The results show that the samples produced at a stirring speed of 1200 rpm achieved the greatest enhancement of 25 % in surface microhardness, 37 % in wear resistance and 33 % reduction in friction coefficient. This has significant implications for environmental sustainability as a relatively low rotational speed, hence a low energy input, is sufficient to enhance the surface properties of recycled aluminium alloy 6063. The benefits of superior tribological properties of recycled aluminium alloy afforded by such an energy-efficient surface engineering method include reduced exploitation of new resources, reduced carbon footprint, and enhanced product sustainability and durability.


2021 ◽  
Vol 2144 (1) ◽  
pp. 012033
Author(s):  
I V Tambovskiy ◽  
R A Vdovichenko ◽  
R D Belov ◽  
A D Dyakonova ◽  
R V Nikiforov ◽  
...  

Abstract The paper presents the results of studies on modifying the surface of Ti6Al4V titanium alloy by combined exposure to cathodic nitriding and anodic polishing in electrolysis plasma. The morphology and roughness of the surface, microhardness of the modified layer have been investigated. Wear resistance was studied under dry friction conditions. The effect of combined treatment on corrosion resistance of Ti6Al4V alloy was examined by means of potentiodynamic polarization in Ringer’s solution. It has been established that cathodic nitriding at 750 °C for 10 min leads to the hardening of the surface layer up to 820 HV with an increase in roughness by 2 times and wear resistance almost 3 times. Subsequent anodic plasma electrolytic polishing of the nitriding surface in solution of ammonium sulfate leads to a decrease in roughness and friction coefficient with an increase in corrosion resistance.


Author(s):  
Farah AZİH ◽  
Manahıl MAQBOOL ◽  
Zuryati GHANİ ◽  
Mohamad HALİM ◽  
Tahir NOORANİ

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6995
Author(s):  
Qingzhong Xu ◽  
Yan Liu ◽  
Haiyang Lu ◽  
Jichen Liu ◽  
Gangjun Cai

To improve the surface corrosion resistance of 42CrMo4 high-strength steel used in a marine environment, this article studied the effects of hard turning on the surface integrity and corrosion resistance of 42CrMo4 high-strength steel through the single factor experimental method, namely hard turning, polarization corrosion, electrochemical impedance spectroscopy, potentiodynamic polarization curve, and salt spray tests. The results indicated that the surface integrity was modified by the hard turning, with a surface roughness lower than Ra 0.8 μm, decreased surface microhardness, fine and uniform surface microstructure, and dominant surface residual compressive stress. The hard turning process was feasible to strengthen the surface corrosion resistance of 42CrMo4 high-strength steel. The better corrosion resistance of the surface layer than that of the substrate material can be ascribed to the uniform carbides and compact microstructure. The corrosion resistance varied with cutting speeds as a result of the changed surface microhardness and residual compressive stress, varied with feed rates as a result of the changed surface roughness, and varied with cutting depths as a result of the changed surface residual compressive stress, respectively. The surface integrity with smaller surface roughness and microhardness and bigger surface residual compressive stress was beneficial for corrosion resistance.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3902
Author(s):  
Pipop Saikaew ◽  
Patchara Phimolthares ◽  
Pheeratas Phitakthanaakul ◽  
Panthira Sirikul ◽  
Suwannee Mekrakseree ◽  
...  

Color modifiers can be mixed with resin composites to mimic the shade of severely discolored tooth. The aim of this study was to assess the effects of a color modifier on the physical and mechanical properties of a resin composite. The composite was mixed with a color modifier at 0 wt% (group 1), 1 wt% (group 2), 2.5 wt% (group 3), or 5 wt% (group 4). The degree of monomer conversion (DC) was examined after light curing for 20 or 40 s. Biaxial flexural strength (BFS)/modulus (BFM), surface microhardness (SH), and water sorption (Wsp)/solubility (Wsl) were also tested. The DC of group 1 was significantly higher than that of groups 3 and 4. The increase in curing time from 20 to 40 s increased the DC by ~10%. The BFS, BFM, Wsp, and Wsl of all the groups were comparable. A negative correlation was detected between the concentration of color modifier and the BFS and DC, while a positive correlation was observed with Wsp. In conclusion, the color modifier reduced the DC of composites, but the conversion was improved by extending the curing time. The increase in color modifier concentration also correlated with a reduction in strength and the increase in the water sorption of the composites.


2021 ◽  
Author(s):  
Moufida Abufarwa ◽  
Amal Noureldin ◽  
Rosemary Dziak ◽  
David Covell

ABSTRACT Objectives To compare efficacy of casein phosphopeptide (CPP)–amorphous calcium phosphate (ACP) fluoride varnish and light-curable resin modified glass ionomer fluoride varnish (FV) in preventing white spot lesions and evaluating acid etching prior to CPP-ACPFV application on its efficacy. Materials and Methods Molars and premolars were transected and halves divided into four groups (n = 18/group): (1) resin-modified glass ionomer FV: etched and Clinpro-XT varnish (3M ESPE, Pymble, New South Wales, Australia) application; (2) CPP-ACPFV: MI varnish (GC America, Alsip, IL) application; (3) Etch+CPP-ACPFV: etched and MI varnish application; (4) Control: etched and no surface treatment. To simulate 12 weeks in an intraoral environment, samples were subjected to thermocycling, brushing, and pH cycling. Enamel surface microhardness was evaluated at baseline and after the simulated 12 weeks. Representative samples were also assessed using scanning electron microscopy (SEM). Results At baseline there was no significant difference in microhardness among groups. After the simulated 12 weeks, all groups showed significant within-group differences (P < .001). Control showed the highest percentage loss of surface microhardness (89%), followed by CPP-ACPFV (58%), RMGIFV (51%), and Etch+CPP-ACPFV (24%). The control group had a significant decrease in microhardness compared to all experimental groups (P < .001). No difference was found between the RMGIFV and CPP-ACPFV varnish groups. The Etch+CPP-ACPFV group had significantly less decrease in microhardness compared to the RMGIFV (P < .001) and CPP-ACPFV groups (P < .001). With SEM, control samples showed signs of enamel surface damage, while experimental groups showed spherical particles on a relatively intact surface. Conclusions RMGIFV and CPP-ACPFV are effective in reducing enamel demineralization. Acid etching the enamel surface prior to CPP-ACPFV varnish application increased its efficacy.


Sign in / Sign up

Export Citation Format

Share Document