cell culture model
Recently Published Documents


TOTAL DOCUMENTS

773
(FIVE YEARS 150)

H-INDEX

57
(FIVE YEARS 7)

Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 91
Author(s):  
Lucija Kuna ◽  
Milorad Zjalic ◽  
Tomislav Kizivat ◽  
Hrvoje Roguljic ◽  
Vjera Nincevic ◽  
...  

Background and Objectives: Peptic ulcer disease is a chronic disease affecting up to 10% of the world’s population. Proton pump inhibitors, such as lansoprazole are the gold standard in the treatment of ulcer disease. However, various studies have shown the effectiveness of garlic oil extracts in the treatment of ulcer disease. A cellular model can be established in the human gastric cell line by sodium taurocholate. The aim of this study was to explore the effects of garlic oil extracts pretreatment and LPZ addition in the cell culture model of peptic ulcer disease by examining oxidative stress and F-actin distribution. Materials and Methods: Evaluation was performed by determination of glutathione and prostaglandin E2 concentrations by ELISA; human gastric cell line proliferation by cell counting; expression of ATP-binding cassette, sub-family G, member 2; nuclear factor kappa B subunit 2 by RT PCR; and F-actin cytoskeleton visualization by semi-quantification of Rhodamine Phalloidin stain. Results: Our results showed significant reduction of cell damage after sodium taurocholate incubation when the gastric cells were pretreated with lansoprazole (p < 0.001) and increasing concentrations of garlic oil extracts (p < 0.001). Pretreatment with lansoprazole and different concentrations of garlic oil extracts increased prostaglandin E2 and glutathione concentrations in the cell culture model of peptic ulcer disease (p < 0.001). Positive correlation of nuclear factor kappa B subunit 2 (p < 0.01) with lansoprazole and garlic oil extracts pretreatment was seen, while ATP-binding cassette, sub-family G, member 2 expression was not changed. Treatment with sodium taurocholate as oxidative stress on F actin structure was less pronounced, although the highest concentration of garlic oil extracts led to a statistically significant increase of total amount of F-actin (p < 0.001). Conclusions: Hence, pretreatment with garlic oil extracts had gastroprotective effect in the cell model of peptic ulcer disease. However, further experiments are needed to fully elucidate the mechanism of this protective role.


Author(s):  
Fatemeh Safari ◽  
Narjes Rayat Azad ◽  
Ali Alizadeh Ezdiny ◽  
Safoora Pakizehkar ◽  
Zeinab Khazaei Koohpar ◽  
...  

Background: Prostate Cancer (PCa) is the major reason for the high mortality rates among men worldwide. In fact, current therapeutic approaches are not successful. It appears that discovering more effective methods considering several parameters such as availability, low cost, and no toxicity to normal cells is one of the biggest challenges for interested researchers. Green tea (extracted from the plant Camellia sinensis) with high level of polyphenolic compounds and as the most globally consumed beverage has attracted considerable interest. MicroRNAs (or miRNAs) were considered as novel tools in cancer therapy which modulate various biological events in cell by regulation of gene expression. The aim of the current study was to evaluate the antitumor activity of green tea in LNCaP cells through up-regulation of miR-181a expression. Methods: First, LNCaP cells were cultured and by using quantitative real time PCR (qRT-PCR) and western blot methods, the expression levels of Bax and BCL2 were analyzed. Next, a 3D cell culture model was applied to evaluate the expression of miRNA-181a in LNCaP cells.  Results: It was shown that green tea induced cellular apoptosis. The high number of apoptotic nuclei was also shown by using DAPI staining. The inhibition of tumor growth was revealed by analyzing the size and number of spheroids. Also, up-regulation of miR-181a expression in LNCaP cells was revealed after treatment with green tea. Conclusion: Our results are helpful to design antitumor regimens based on consumption of green tea through up-regulation of miRNA-181a expression and induction of apoptosis.  


Author(s):  
Maria Maares ◽  
Claudia Keil ◽  
Luise Pallasdies ◽  
Maximilian Schmacht ◽  
Martin Senz ◽  
...  

2021 ◽  
Author(s):  
Ashok Chakraborty ◽  
Anil Diwan ◽  
Vijetha Chiniga ◽  
Vinod Arora ◽  
Preetam Holkar ◽  
...  

Remdesivir (RDV) is the only antiviral drug so far approved for COVID-19 therapy by the FDA. However its efficacy is limited in vivo due to its low stability in presence of plasma. This paper compared the stability of RDV encapsulated with our platform technology based polymer NV-387 (NV-CoV-2), in presence of plasma in vitro and in vivo . Furthermore, a non-clinical pharmacology studies of NV-CoV-2 (Polymer) and NV-CoV-2-R (Polymer encapsulated Remdesivir ) in both NL-63 infected and uninfected rats were done. In an in vitro cell culture model experiment, antiviral activity of NV-CoV-2 and NV-CoV-2-R are also compared with RDV.


2021 ◽  
Author(s):  
Nathan Hayes ◽  
Mark Fogarty ◽  
Laura Sadofsky ◽  
Huw S Jones

Age-related frailty is a significant health and social care burden, however treatment options are limited. There is currently a lack of suitable cell culture model for screening large numbers of test compounds to identifying those which can potentially promote healthy skeletal muscle function. This paper describes the characterization of reactive oxygen and nitrogen species (RONS) signalling changes in young and aged myoblasts and myotubes using the C2C12 cell line, and the application of aged myoblast and myotube cultures to assess the effect of dietary polyphenols on RONS signalling. Aged myoblasts and myotubes were observed to have significantly increased reactive oxygen species levels (p<0.01 and p<0.001 respectively), increases in nitric oxide levels (p<0.05 for myoblasts and myotubes), and lipid peroxidation markers (p<0.05 for myoblasts and myotubes). A panel of nine polyphenols were assessed in aged myoblasts and myotubes using concentrations and incubation times consistent with known pharmacokinetic parameters for these compounds. Of these, although several polyphenols were seen to reduce single markers of RONS signalling, only kaempferol and resveratrol consistently reduced multiple markers of RONS signalling with statistical significance in both cell models. Overall, this research has shown the utility of the C2C12 model, as both myoblasts and myotubes, as a suitable cell model for screening compounds for modulating RONS signalling in aged muscle, and that resveratrol and kaempferol (using pharmacokinetically-informed exposures) can modulate RONS signalling in skeletal muscle cells after an acute exposure.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6422
Author(s):  
Qi Xu ◽  
Ziyu Chen ◽  
Borong Zhu ◽  
Yiming Li ◽  
Manju B. Reddy ◽  
...  

Cinnamon procyanidin oligomers (CPOs) are water-soluble components extracted from cinnamon. This study aims to explore the neuroprotection of B-type CPO (CPO-B) against 1-methyl-4-phenylpyridinium (MPP+)-mediated cytotoxicity and the molecular mechanisms underlying its protection. The results demonstrated that CPO-B showed protection by increasing cell viability, attenuating an intracellular level of reactive oxygen species, downregulating cleaved caspase-3 expression, and upregulating the Bcl-2/Bax ratio. Moreover, CPO-B completely blocked the dephosphorylation of extracellular, signal-regulated kinase 1 and 2 (Erk1/2) caused by MPP+. Treatment with an Erk1/2 inhibitor, SCH772984, significantly abolished the neuroprotection of CPO-B against MPP+. Taken together, we demonstrate that CPO-B from cinnamon bark provided protection against MPP+ in cultured SH-SY5Y cells, and the potential mechanisms may be attributed to its ability to modulate the dysregulation between pro-apoptotic and anti-apoptotic proteins through the Erk1/2 signaling pathway. Our findings suggest that the addition of cinnamon to food or supplements might benefit patients with PD.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5320
Author(s):  
Emma Polonio-Alcalá ◽  
Marc Rabionet ◽  
Santiago Ruiz-Martínez ◽  
Sònia Palomeras ◽  
Rut Porta ◽  
...  

The establishment of a three-dimensional (3D) cell culture model for lung cancer stem cells (LCSCs) is needed because the study of these stem cells is unable to be done using flat surfaces. The study of LCSCs is fundamental due to their key role in drug resistance, tumor recurrence, and metastasis. Hence, the purpose of this work is the evaluation of polycaprolactone electrospun (PCL-ES) scaffolds for culturing LCSCs in sensitive and resistant EGFR-mutated (EGFRm) lung adenocarcinoma cell models. We performed a thermal, physical, and biological characterization of 10% and 15%-PCL-ES structures. Several genes and proteins associated with LCSC features were analyzed by RT-qPCR and Western blot. Vimentin and CD133 tumor expression were evaluated in samples from 36 patients with EGFRm non-small cell lung cancer through immunohistochemistry. Our findings revealed that PC9 and PC9-GR3 models cultured on PCL-ES scaffolds showed higher resistance to osimertinib, upregulation of ABCB1, Vimentin, Snail, Twist, Sox2, Oct-4, and CD166, downregulation of E-cadherin and CD133, and the activation of Hedgehog pathway. Additionally, we determined that the non-expression of CD133 was significantly associated with a low degree of histological differentiation, disease progression, and distant metastasis. To sum up, we confirmed PCL-ES scaffolds as a suitable 3D cell culture model for the study of the LCSC niche.


Author(s):  
Mehwish Arshad ◽  
Ethan M. Rowland ◽  
Kai Riemer ◽  
Spencer J. Sherwin ◽  
Peter D. Weinberg

2021 ◽  
Author(s):  
Genevieve Housman ◽  
Emilie Briscoe ◽  
Yoav Gilad

AbstractThe evolution of complex skeletal traits in primates was likely influenced by both genetic and environmental factors. Because skeletal tissues are notoriously challenging to study using functional genomic approaches, they remain poorly characterized even in humans, let alone across multiple species. The challenges involved in obtaining functional genomic data from the skeleton, combined with the difficulty of obtaining such tissues from nonhuman apes, motivated us to consider an alternative in vitro system with which to comparatively study gene regulation in skeletal cell types. Specifically, we differentiated six human and six chimpanzee induced pluripotent stem cell lines (iPSCs) into mesenchymal stem cells (MSCs) and subsequently into osteogenic cells (bone cells). We validated differentiation using standard methods and collected single-cell RNA sequencing data from over 100,000 cells across multiple samples and replicates at each stage of differentiation. While most genes that we examined display conserved patterns of expression across species, hundreds of genes are differentially expressed (DE) between humans and chimpanzees within and across stages of osteogenic differentiation. Some of these interspecific DE genes show functional enrichments relevant in skeletal tissue trait development. Moreover, topic modeling indicates that interspecific gene programs become more pronounced as cells mature. Overall, we propose that this in vitro model can be used to identify interspecific regulatory differences that may have contributed to skeletal trait differences between species.Author SummaryPrimates display a range of skeletal morphologies and susceptibilities to skeletal diseases, but the molecular basis of these phenotypic differences is unclear. Studies of gene expression variation in primate skeletal tissues are extremely restricted due to the ethical and practical challenges associated with collecting samples. Nevertheless, the ability to study gene regulation in primate skeletal tissues is crucial for understanding how the primate skeleton has evolved. We therefore developed a comparative primate skeletal cell culture model that allows us to access a spectrum of human and chimpanzee cell types as they differentiate from stem cells into bone cells. While most gene expression patterns are conserved across species, we also identified hundreds of differentially expressed genes between humans and chimpanzees within and across stages of differentiation. We also classified cells by osteogenic stage and identified additional interspecific differentially expressed genes which may contribute to skeletal trait differences. We anticipate that this model will be extremely useful for exploring questions related to gene regulation variation in primate bone biology and development.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sigurdur Trausti Karvelsson ◽  
Qiong Wang ◽  
Bylgja Hilmarsdottir ◽  
Arnar Sigurdsson ◽  
Siver Andreas Moestue ◽  
...  

AbstractEpithelial-to-mesenchymal transition (EMT) is fundamental to both normal tissue development and cancer progression. We hypothesized that EMT plasticity defines a range of metabolic phenotypes and that individual breast epithelial metabolic phenotypes are likely to fall within this phenotypic landscape. To determine EMT metabolic phenotypes, the metabolism of EMT was described within genome-scale metabolic models (GSMMs) using either transcriptomic or proteomic data from the breast epithelial EMT cell culture model D492. The ability of the different data types to describe breast epithelial metabolism was assessed using constraint-based modeling which was subsequently verified using 13C isotope tracer analysis. The application of proteomic data to GSMMs provided relatively higher accuracy in flux predictions compared to the transcriptomic data. Furthermore, the proteomic GSMMs predicted altered cholesterol metabolism and increased dependency on argininosuccinate lyase (ASL) following EMT which were confirmed in vitro using drug assays and siRNA knockdown experiments. The successful verification of the proteomic GSMMs afforded iBreast2886, a breast GSMM that encompasses the metabolic plasticity of EMT as defined by the D492 EMT cell culture model. Analysis of breast tumor proteomic data using iBreast2886 identified vulnerabilities within arginine metabolism that allowed prognostic discrimination of breast cancer patients on a subtype-specific level. Taken together, we demonstrate that the metabolic reconstruction iBreast2886 formalizes the metabolism of breast epithelial cell development and can be utilized as a tool for the functional interpretation of high throughput clinical data.


Sign in / Sign up

Export Citation Format

Share Document