structural optimisation
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 35)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Armano Papageorge

<p>Since the beginning of the 20th century, modernism introduced to the world an architectural composite that consists of concrete, steel and glass. Heading into the 21st century, the use of these three materials has only expanded as it continues to be the most economically efficient means of construction. While digital technology in design and construction continues to evolve, the materials at which we construct architecture has remained the same. Given the rapid growth of the human population, new and more sustainable approaches to construction methodologies and materials need to be explored and utilised. This research will demonstrate the potential of freeform 3D printing as a sustainable and efficient alternative building method. It outlines contemporary digital design techniques including computation and simulation tools as a means to define and test this proposed building method including structural optimisation tools to create the most structurally efficient form from additive manufacturing. The computational methods described are then applied to a manufacturing process that includes a 6-axis robotic arm. The final result is a building methodology that supports a computational workflow from design conception to manufacture.</p>


2021 ◽  
Author(s):  
◽  
Armano Papageorge

<p>Since the beginning of the 20th century, modernism introduced to the world an architectural composite that consists of concrete, steel and glass. Heading into the 21st century, the use of these three materials has only expanded as it continues to be the most economically efficient means of construction. While digital technology in design and construction continues to evolve, the materials at which we construct architecture has remained the same. Given the rapid growth of the human population, new and more sustainable approaches to construction methodologies and materials need to be explored and utilised. This research will demonstrate the potential of freeform 3D printing as a sustainable and efficient alternative building method. It outlines contemporary digital design techniques including computation and simulation tools as a means to define and test this proposed building method including structural optimisation tools to create the most structurally efficient form from additive manufacturing. The computational methods described are then applied to a manufacturing process that includes a 6-axis robotic arm. The final result is a building methodology that supports a computational workflow from design conception to manufacture.</p>


2021 ◽  
pp. 115035
Author(s):  
Jiaqi Dong ◽  
Chao Hu ◽  
John Holmes ◽  
Qing-Hua Qin ◽  
Yi Xiao

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Anna Stefańska ◽  
Marta Cygan ◽  
Kinga Batte ◽  
Joanna Pietrzak

Digital fabrication leads architects and structural engineers to modify the design optimisation methodology. The designers, as never before, are facing new technologies developed in the search for new materials based, among others, on wood components and the improvement of manufacturing methods at the same time. In this process, the material and manufacturing technology adjustment to desired aesthetic outcomes is possible not only by the material used but also by the self-organisation of the structure's optimisation. New fabrication techniques linked with topology optimising software change traditional load-bearing systems designing using timber and wood-based materials. Multi-objective optimisation research indicates that timber might be a comprehensive material based on various applications from low-tech to cutting-edge contemporary fabrication technologies. The article presents new tools and methods for the optimisation of structural elements. A case study based on interdisciplinary architectural and structural optimisation suggests the possible effective research-based design. Comparing contemporary buildings with wood load-bearing structures explains timber usage's diversity and characteristics in modern design.


Author(s):  
Navina Waschinsky ◽  
Franz-Joseph Barthold ◽  
Andreas Menzel

AbstractIn this article, we propose an optimisation framework that can contribute to the prevention of premature failure or damage to building structures and can thereby strengthen their longevity. We concentrate on structures that are contaminated by chemical substances and that have strong destructive effects on the material. The aim of this contribution is a mathematical algorithm that allows the optimisation of a structure exposed to chemical influences and thus the assurance of the static load capacity. To achieve this, we present a coupled mechanical-diffusion-degradation approach embedded in a finite element (FE) framework. Furthermore, we integrate an optimisation algorithm to reduce material degradation. In this paper, we establish shape optimisation of a structure with a gradient based optimisation algorithm.


Sign in / Sign up

Export Citation Format

Share Document