ion velocity distribution function
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Tokuda ◽  
Y. Kawachi ◽  
M. Sasaki ◽  
H. Arakawa ◽  
K. Yamasaki ◽  
...  

AbstractThe velocity distribution function is a statistical description that connects particle kinetics and macroscopic parameters in many-body systems. Laser-induced fluorescence (LIF) spectroscopy is utilized to measure the local velocity distribution function in spatially inhomogeneous plasmas. However, the analytic form of such a function for the system of interest is not always clear under the intricate factors in non-equilibrium states. Here, we propose a novel approach to select the valid form of the velocity distribution function based on Bayesian statistics. We formulate the Bayesian inference of ion velocity distribution function and apply it to LIF spectra locally observed at several positions in a linear magnetized plasma. We demonstrate evaluating the spatial inhomogeneity by verifying each analytic form of the local velocity distribution function. Our approach is widely applicable to experimentally establish the velocity distribution function in plasmas and fluids, including gases and liquids.


2020 ◽  
Vol 38 (5) ◽  
pp. 1081-1099
Author(s):  
Markus Battarbee ◽  
Xóchitl Blanco-Cano ◽  
Lucile Turc ◽  
Primož Kajdič ◽  
Andreas Johlander ◽  
...  

Abstract. The foreshock is a region of space upstream of the Earth's bow shock extending along the interplanetary magnetic field (IMF). It is permeated by shock-reflected ions and electrons, low-frequency waves, and various plasma transients. We investigate the extent of the He2+ foreshock using Vlasiator, a global hybrid-Vlasov simulation. We perform the first numerical global survey of the helium foreshock and interpret some historical foreshock observations in a global context. The foreshock edge is populated by both proton and helium field-aligned beams, with the proton foreshock extending slightly further into the solar wind than the helium foreshock and both extending well beyond the ultra-low frequency (ULF) wave foreshock. We compare our simulation results with Magnetosphere Multiscale (MMS) Hot Plasma Composition Analyzer (HPCA) measurements, showing how the gradient of suprathermal ion densities at the foreshock crossing can vary between events. Our analysis suggests that the IMF cone angle and the associated shock obliquity gradient can play a role in explaining this differing behaviour. We also investigate wave–ion interactions with wavelet analysis and show that the dynamics and heating of He2+ must result from proton-driven ULF waves. Enhancements in ion agyrotropy are found in relation to, for example, the ion foreshock boundary, the ULF foreshock boundary, and specular reflection of ions at the bow shock. We show that specular reflection can describe many of the foreshock ion velocity distribution function (VDF) enhancements. Wave–wave interactions deep in the foreshock cause de-coherence of wavefronts, allowing He2+ to be scattered less than protons.


Author(s):  
О.А. Новодворский ◽  
В.А. Михалевский ◽  
Д.С. Гусев ◽  
А.А. Лотин ◽  
Л.С. Паршина ◽  
...  

AbstractThe Langmuir-probe technique has been used to study the time-of-flight characteristics of a laser torch during MnSi-target ablation in vacuum and argon atmosphere by pulsed 532-nm laser radiation at 15-ns pulse duration. It is established that the amplitude of the signal of fast particles in the laser torch nonmonotonically depends on the buffer-gas pressure. Mechanisms determining this dependence of laser-torch characteristics on the pressure are considered. The influence of buffer-gas pressure on the ion-velocity distribution function is determined.


Sign in / Sign up

Export Citation Format

Share Document