orbital elements
Recently Published Documents


TOTAL DOCUMENTS

702
(FIVE YEARS 87)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 34 ◽  
pp. 93-99
Author(s):  
P.P. Sukhov ◽  
V. P. Yepishev ◽  
I. I. Motrunich ◽  
K. P. Sukhov

One of the challenges of satellite characterization is the ability to not only determine the spacecraft or-bit, but also satellite operating status, orientation, size, bus type, and material properties. Positional observations allow us to determine and/or update orbital elements of satellites, but they do not afford an insight into the behaviour of a satellite in orbit. The article discusses the results of solving the inverse problem of astrophysics. How you can use photometric, astrometric information about a satellite, its lighting conditions, supplemented by additional information, to understand the behavior of a satellite in orbit. The results are shown using examples of four satellites in geostationary orbit. An algorithm for calculating the photometric and dynamic characteristics of geostationary objects is provided.


2021 ◽  
Vol 133 (11-12) ◽  
Author(s):  
Giulio Baù ◽  
Javier Hernando-Ayuso ◽  
Claudio Bombardelli
Keyword(s):  

2021 ◽  
Vol 2 (6) ◽  
pp. 234
Author(s):  
Darryl Z. Seligman ◽  
Kaitlin M. Kratter ◽  
W. Garrett Levine ◽  
Robert Jedicke

Abstract The compositional and morphological evolution of minor bodies in the solar system is primarily driven by the evolution of their heliocentric distances, as the level of incident solar radiation regulates cometary activity. We investigate the dynamical transfer of Centaurs into the inner solar system, facilitated by mean motion resonances with Jupiter and Saturn. The recently discovered object P/2019 LD2 will transition from the Centaur region to the inner solar system in 2063. In order to contextualize LD2, we perform N-body simulations of a population of Centaurs and Jupiter-family comets. Objects between Jupiter and Saturn with Tisserand parameter T J ∼ 3 are transferred onto orbits with perihelia q < 4 au within the next 1000 yr with notably high efficiency. Our simulations show that there may be additional LD2-like objects transitioning into the inner solar system in the near future, all of which have low ΔV with respect to Jupiter. We calculate the distribution of orbital elements resulting from a single Jovian encounter and show that objects with initial perihelia close to Jupiter are efficiently scattered to q < 4 au. Moreover, approximately 55% of the transitioning objects in our simulated population experience at least one Jovian encounter prior to reaching q < 4 au. We demonstrate that a spacecraft stationed near Jupiter would be well positioned to rendezvous, orbit-match, and accompany LD2 into the inner solar system, providing an opportunity to observe the onset of intense activity in a pristine comet in situ. Finally, we discuss the prospect of identifying additional targets for similar measurements with forthcoming observational facilities.


2021 ◽  
Vol 162 (6) ◽  
pp. 262
Author(s):  
Eliab F. Canul ◽  
Héctor Velázquez ◽  
Yilen Gómez Maqueo Chew

Abstract The transit timing variations method is currently the most successful method to determine dynamical masses and orbital elements for Earth-sized transiting planets. Precise mass determination is fundamental to restrict planetary densities and thus infer planetary compositions. In this work, we present Nauyaca, a Python package dedicated to finding planetary masses and orbital elements through the fitting of observed midtransit times from an N-body approach. The fitting strategy consists of performing a sequence of minimization algorithms (optimizers) that are used to identify high probability regions in the parameter space. These results from optimizers are used for initialization of a Markov chain Monte Carlo method, using an adaptive Parallel-Tempering algorithm. A set of runs are performed in order to obtain posterior distributions of planetary masses and orbital elements. In order to test the tool, we created a mock catalog of synthetic planetary systems with different numbers of planets where all of them transit. We calculate their midtransit times to give them as an input to Nauyaca, testing statistically its efficiency in recovering the planetary parameters from the catalog. For the recovered planets, we find typical dispersions around the real values of ∼1–14 M ⊕ for masses, between 10–110 s for periods, and between ∼0.01–0.03 for eccentricities. We also investigate the effects of the signal-to-noise ratio and number of transits on the correct determination of the planetary parameters. Finally, we suggest choices of the parameters that govern the tool for the usage with real planets, according to the complexity of the problem and computational facilities.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 443
Author(s):  
Lorenzo Iorio

One of the post-Keplerian (PK) parameters determined in timing analyses of several binary pulsars is the fractional periastron advance per orbit kPK. Along with other PK parameters, it is used in testing general relativity once it is translated into the periastron precession ω˙PK. It was recently remarked that the periastron ω of PSR J0737–3039A/B may be used to measure/constrain the moment of inertia of A through the extraction of the general relativistic Lense–Thirring precession ω˙LT,A≃−0.00060∘yr−1 from the experimentally determined periastron rate ω˙obs provided that the other post-Newtonian (PN) contributions to ω˙exp can be accurately modeled. Among them, the 2PN seems to be of the same order of magnitude of ω˙LT,A. An analytical expression of the total 2PN periastron precession ω˙2PN in terms of the osculating Keplerian orbital elements, valid not only for binary pulsars, is provided, thereby elucidating the subtleties implied in correctly calculating it from k1PN+k2PN and correcting some past errors by the present author. The formula for ω˙2PN is demonstrated to be equivalent to that obtainable from k1PN+k2PN by Damour and Schäfer expressed in the Damour–Deruelle (DD) parameterization. ω˙2PN actually depends on the initial orbital phase, hidden in the DD picture, so that −0.00080∘yr−1≤ω˙2PN≤−0.00045∘yr−1. A recently released prediction of ω˙2PN for PSR J0737–3039A/B is discussed.


Author(s):  
Ahmedi Asraf ◽  
Rise Hapshary Surayuda ◽  
Ahmad Zammir Ribah ◽  
Kamirul ◽  
Mohammad Mukhayadi
Keyword(s):  
Gps Data ◽  

2021 ◽  
Vol 922 (1) ◽  
pp. 74
Author(s):  
Jaroslav Haas ◽  
Ladislav Šubr

Abstract Stellar motions in the innermost parts of galactic nuclei, where the gravity of a supermassive black hole dominates, follow Keplerian ellipses to the first order of approximation. These orbits may be subject to periodic (Kozai–Lidov) oscillations of their orbital elements if some nonspherically distributed matter (e.g., a secondary massive black hole, coherent stellar subsystem, or large-scale gaseous structure) perturbs the gravity of the central supermassive black hole. These oscillations are, however, affected by the overall potential of the host nuclear star cluster. In this paper, we show that its influence strongly depends on the properties of the particular system, as well as the considered timescale. We demonstrate that for systems with astrophysically relevant parameters, the Kozai–Lidov oscillations of eccentricity can be enhanced by the extended potential of the cluster in terms of reaching significantly higher maximal values. In a more general statistical sense, the oscillations of eccentricity are typically damped. The efficiency of the damping, however, may be small to negligible for the suitable parameters of the system. This applies, in particular, in the case when the perturbing body is on an eccentric orbit.


2021 ◽  
Vol 11 (21) ◽  
pp. 10181
Author(s):  
Arvind Mukundan ◽  
Hsiang-Chen Wang

In this study, an algorithm to identify the maneuvers of a satellite is developed by comparing the Keplerian elements acquired from the two-line elements (TLEs) and Keplerian elements propagated from simplified perturbation models. TLEs contain a specific set of orbital elements, whereas the simplified perturbation models are used to propagate the state vectors at a given time. By comparing the corresponding Keplerian elements derived from both methods, a satellite’s maneuver is identified. This article provides an outline of the working methodology and efficacy of the method. The function of this approach is evaluated in two case studies, i.e., TOPEX/Poseidon and Envisat, whose maneuver histories are available. The same method is implemented to identify the station-keeping maneuvers for TDRS-3, whose maneuver history is not available. Results derived from the analysis indicate that maneuvers with a magnitude of even as low as cm/s are detected when the detection parameters are calibrated properly.


2021 ◽  
pp. 343-354
Author(s):  
Shengqing Yang ◽  
Yaoke Du ◽  
Wenyan Wang ◽  
Junli Chen ◽  
Jingyu Wu

2021 ◽  
Vol 19 (9) ◽  
pp. 24-37
Author(s):  
Najlaa Ozaar Hasan ◽  
Wafaa Hasan Ali Zaki ◽  
Ahmed Kader Izzet

Researching and modeling perturbations is essential in astrodynamics because it gives information on the deviations from the satellite's normal, idealized, or unperturbed motion. Examined the impact of non-conservative atmospheric drag and orbital elements of low-earth-orbit satellites under low solar activity. The study is consisting of parts, the first looks at the effects of atmospheric drag on LEO satellites different area to mass ratios, and the second looks at different inclination values. Modeling the impacts of perturbation is included in each section, and the final portion determines the effects of atmospheric drag at various node values. The simulation was run using the Celestial Mechanics software system's SATORB module (Beutler, 2005), which solves the perturbation equations via numerical integration. The findings were examined using Matlab 2012. Conclusion that the impacts are stronger for retrograde orbits, which is due to the fact that the satellite moves in the opposite direction. The atmospheric drag effects for all orbital elements were increased by increasing the area to mass ratio. When the node value rises, the size parameter changes slightly, but the other orbital elements change. At varying inclinations, it is found that the changes in orbital elements due to atmospheric drug.


Sign in / Sign up

Export Citation Format

Share Document