uniaxial deformation
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 47)

H-INDEX

38
(FIVE YEARS 4)

2021 ◽  
Vol 2131 (4) ◽  
pp. 042052
Author(s):  
G M Poletaev ◽  
D I Ziuzin ◽  
D V Novoselova ◽  
R Y Rakitin

Abstract The molecular dynamics method was used to study the influence of elastic uniaxial deformation on the migration velocity of tilt boundaries with misorientation axes [100] and [111] in nickel. The dependences of the migration velocity at a temperature of 1600 K on the misorientation angle were obtained. It is shown that the high-angle [100] and [111] tilt boundaries migrate at approximately the same velocity, while the low-angle [111] boundaries migrate approximately twice as fast as the [100] boundaries. The obtained dependences of the migration velocity of the boundaries on the value of uniaxial deformation in almost all cases turned out to be nonmonotonic and had a maximum at a tension value of about 1%. With a further increase in tension, migration slowed down, which is most likely explained by a decrease in the surface tension of the boundaries and, accordingly, in the driving force due to the finite sorption capacity of grain boundaries with respect to the free volume. Under elastic compression, in most cases, a monotonic decrease in the migration velocity was observed, which is due to a decrease in free space during compression and a decrease in the mobility of atoms at the boundary.


2021 ◽  
Vol 61 (3) ◽  
Author(s):  
K. Shunkeyev ◽  
Zh. Ubaev ◽  
A. Lushchik ◽  
L. Myasnikova

The processes of radiation defect creation and radiative relaxation of electronic excitations under applied local or/and uniaxial elastic deformation have been studied in NaCl crystals by means of optical absorption, luminescence and thermoactivation spectroscopy methods. In NaCl:Li at 80 K, X-ray-induced absorption bands peaked around 3.35 and 4.6 eV have been detected and ascribed to interstitial halide atoms located nearby Li impurity cations, HA(Li) centres. Subsequent thermal annealing of HA(Li) centres leads to the formation of polyhalide centres responsible for the absorption band at 5.35 eV. In an X-irradiated and stressed NaCl:Li crystal (degree of uniaxial elastic deformation of ε = 0.9%), the peak of thermally stimulated luminescence at ~115 K is composed of the ~2.7-eV emission appearing, in our opinion, due to the recombination of the electron, thermally released from an F′ centre, with a hole-type HA(Li) centre. The applied uniaxial elastic stress facilitates the self-trapping of anion excitons in regular regions of a NaCl lattice and impedes the energy transfer by mobile excitons to impurities/defects and, in turn, attenuates the Br-related luminescence peaked at 3.95 eV with respect to the π-emission of self-trapped excitons (~3.35 eV). The 3.95 eV emission has been detected in a natural NaCl crystal containing homologous Br impurity ions.


2021 ◽  
Vol 104 (11) ◽  
Author(s):  
R. Shneck ◽  
S. Nemov ◽  
V. P. Drachev ◽  
L. Chernyak ◽  
Z. Dashevsky

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4155
Author(s):  
Petr Šesták ◽  
Martin Friák ◽  
Mojmír Šob

We performed a quantum-mechanical molecular-dynamics (MD) study of Fe3Al with and without hydrogen atoms under conditions of uniaxial deformation up to the point of fracture. Addressing a long-lasting problem of hydrogen-induced brittleness of iron-aluminides under ambient conditions, we performed our density-functional-theory (DFT) MD simulations for T = 300 K (room temperature). Our MD calculations include a series of H concentrations ranging from 0.23 to 4 at. % of H and show a clear preference of H atoms for tetrahedral-like interstitial positions within the D03 lattice of Fe3Al. In order to shed more light on these findings, we performed a series of static lattice-simulations with the H atoms located in different interstitial sites. The H atoms in two different types of octahedral sites (coordinated by either one Al and five Fe atoms or two Al and four Fe atoms) represent energy maxima.Our structural relaxation of the H atoms in the octahedral sites lead to minimization of the energy when the H atom moved away from this interstitial site into a tetrahedral-like position with four nearest neighbors representing an energy minimum. Our ab initio MD simulations of uniaxial deformation along the ⟨001⟩ crystallographic direction up to the point of fracture reveal that the hydrogen atoms are located at the newly-formed surfaces of fracture planes even for the lowest computed H concentrations. The maximum strain associated with the fracture is then lower than that of H-free Fe3Al. We thus show that the hydrogen-related fracture initiation in Fe3Al in the case of an elastic type of deformation as an intrinsic property which is active even if all other plasticity mechanism are absent. The newly created fracture surfaces are partly non-planar (not atomically flat) due to thermal motion and, in particular, the H atoms creating locally different environments.


2021 ◽  
pp. 109662
Author(s):  
Jordan Whiteside ◽  
Arnoud C.A. de Vooys ◽  
Elizabeth Sackett ◽  
Hamilton Neil McMurray

2021 ◽  
Vol 887 ◽  
pp. 370-375
Author(s):  
I.A. Morozov ◽  
A.S. Kamenetskikh

Ion-plasma modification of polymers has many potential applications, in particular, in the development of biomedical products. Treatment of soft polymers can easily damage the surface; low-energy plasma and subsequent investigation of the structural and mechanical properties of the surface are required. Polyurethane is a widely used block copolymer. Subplantation of carbon ions heterogeneously changes the structural and mechanical properties of the surface (relief, stiffness, thickness of the modified coating), forming a graphene-like nanolayer. Uniaxial deformation of the treated materials in some cases leads to the damage of the surface (local nanocracks, folds). Materials have increased hydrophobicity, good deformability (valid for certain treatment regimes) and can find application in design of products with improved biomedical properties.


Sign in / Sign up

Export Citation Format

Share Document