obligate anaerobe
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 14)

H-INDEX

23
(FIVE YEARS 2)

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4741
Author(s):  
Jamie Toole ◽  
Hannah L. Bolt ◽  
John J. Marley ◽  
Sheila Patrick ◽  
Steven L. Cobb ◽  
...  

Peptoids (oligo N-substituted glycines) are peptide analogues, which can be designed to mimic host antimicrobial peptides, with the advantage that they are resistant to proteolytic degradation. Few studies on the antimicrobial efficacy of peptoids have focused on Gram negative anaerobic microbes associated with clinical infections, which are commonly recalcitrant to antibiotic treatment. We therefore studied the cytotoxicity and antibiofilm activity of a family of peptoids against the Gram negative obligate anaerobe Fusobacterium nucleatum, which is associated with infections in the oral cavity. Two peptoids, peptoid 4 (NaeNpheNphe)4 and peptoid 9 (NahNspeNspe)3 were shown to be efficacious against F. nucleatum biofilms at a concentration of 1 μM. At this concentration, peptoids 4 and 9 were not cytotoxic to human erythrocytes or primary human gingival fibroblast cells. Peptoids 4 and 9 therefore have merit as future therapeutics for the treatment of oral infections.


2021 ◽  
Vol 10 (29) ◽  
Author(s):  
Mohammad A. Tariq ◽  
Simon R. Carding

Bacteroides fragilis is an obligate anaerobe and a common gut commensal bacterium that is also an important opportunistic pathogen. Here, we present the complete genome sequence of the circularly permuted B. fragilis bacteriophage vB_BfrS_NCTC. It comprises 47,160 bp, with 69 open reading frames.


mSphere ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
David Halpern ◽  
Claire Morvan ◽  
Aurélie Derré-Bobillot ◽  
Thierry Meylheuc ◽  
Mélanie Guillemet ◽  
...  

ABSTRACT Aerobic bacteria are frequent primocolonizers of the human naive intestine. Their generally accepted role is to eliminate oxygen, which would allow colonization by anaerobes that subsequently dominate bacterial gut populations. In this hypothesis-based study, we revisited this dogma experimentally in a germfree mouse model as a mimic of the germfree newborn. We varied conditions leading to the establishment of the dominant intestinal anaerobe Bacteroides thetaiotaomicron. Two variables were introduced: Bacteroides inoculum size and preestablishment by bacteria capable or not of consuming oxygen. High Bacteroides inoculum size enabled its primocolonization. At low inocula, we show that bacterial preestablishment was decisive for subsequent Bacteroides colonization. However, even non-oxygen-respiring bacteria, a hemA Escherichia coli mutant and the intestinal obligate anaerobe Clostridium scindens, facilitated Bacteroides establishment. These findings, which are supported by recent reports, revise the long-held assumption that oxygen scavenging is the main role for aerobic primocolonizing bacteria. Instead, we suggest that better survival of aerobic bacteria ex vivo during vectorization between hosts could be a reason for their frequent primocolonization.


2021 ◽  
Vol 12 ◽  
Author(s):  
Roxane Monnoyer ◽  
Kjersti Haugum ◽  
Jacky Lautridou ◽  
Arnar Flatberg ◽  
Astrid Hjelde ◽  
...  

During commercial saturation diving, divers live and work under hyperbaric and hyperoxic conditions. The myriads of bacteria that live in and on the human body must adjust to the resultant hyperbaric stress. In this study, we examined the shifts in bacterial content in the oral cavity of saturation divers, using a metagenomic approach to determine the diversity in the composition of bacterial phyla and genera in saliva from 23 male divers before, during, and immediately after 4 weeks of commercial heliox saturation diving to a working depth of circa 200 m. We found that the bacterial diversity fell during saturation, and there was a change in bacterial composition; with a decrease at the phylum level of obligate anaerobe Fusobacteria, and an increase of the relative abundance of Actinobacteria and Proteobacteria. At the genus level, Fusobacterium, Leptotrichia, Oribacterium, and Veillonella decreased, whereas Neisseria and Rothia increased. However, at the end of the decompression, both the diversity and composition of the microbiota returned to pre-dive values. The results indicate that the hyperoxic conditions during saturation may suppress the activity of anaerobes, leaving a niche for other bacteria to fill. The transient nature of the change could imply that hyperbaric heliox saturation has no lasting effect on the oral microbiota, but it is unknown whether or how a shift in oral bacterial diversity and abundance during saturation might impact the divers’ health or well-being.


2020 ◽  
Vol 22 (21) ◽  
pp. 8204-8209 ◽  
Author(s):  
Jeffrey S. Li ◽  
Yongle Du ◽  
Di Gu ◽  
Wenlong Cai ◽  
Allison Green ◽  
...  
Keyword(s):  

2020 ◽  
Vol 74 (1) ◽  
pp. 545-566
Author(s):  
Aimee Shen

Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.


Author(s):  
Jeffrey S Li ◽  
Yongle Du ◽  
Di Gu ◽  
Wenlong Cai ◽  
Allison Green ◽  
...  

ABSTRACTAnaerobic bacteria are a promising new source for natural product discovery. Examination of extracts from the obligate anaerobe Clostridium roseum led to discovery of a new family of natural products, the clostyrylpyrones. The polyketide synthase-based biosynthetic mechanism of clostyrylpyrones is further proposed based on bioinformatic, gene knockout, biochemical analysis and heterologous expression studies.


2020 ◽  
Author(s):  
A. Romero-Rodríguez ◽  
S. Troncoso-Cotal ◽  
E. Guerrero-Araya ◽  
D. Paredes-Sabja

AbstractClostridioides difficile is an obligate anaerobe spore-forming, Gram-positive, pathogenic bacterium, considered the leading cause of nosocomial diarrhea worldwide. Recent studies have attempted to understand the biology of the outer-most layer of C. difficile spores, the exosporium, which is believed to contribute to early interactions with the host. The fundamental role of the cysteine-rich proteins CdeC and CdeM has been described. However, the molecular details behind the mechanism of exosporium assembly are missing. The underlying mechanisms that govern exosporium assembly in C. difficile remain poorly studied, in part due to difficulties in obtaining pure soluble recombinant proteins of the C. difficile exosporium. In this work, we observed that CdeC was able to form organized inclusion bodies in the E. coli BL21 (DE3) pRIL strain filled with lamellae-like structures separated by an interspace of 5-15 nm; however, this lamellae-like organization is lost upon overexpression in E. coli SHuffle T7 strain with an oxidative environment. Additionally, DTT treatment of CdeC inclusion bodies released monomeric soluble forms of CdeC. Three truncated versions of the CdeC protein were constructed. While all the variants were able to aggregate forming oligomers that are resistant to denaturation conditions, TEM micrographs suggest that the self-organization properties of CdeC may be attributed to the C-terminal domain. Overall, these observations have important implications in further studies implicated in elucidating the role of CdeC in the exosporium assembly of C. difficile spores.


2020 ◽  
Vol 70 (6) ◽  
pp. 3921-3923 ◽  
Author(s):  
Stephen L. W. On ◽  
William G. Miller ◽  
David J. Kelly ◽  
Peter Vandamme

Arcobacter anaerophilus was originally described as the first obligate anaerobe in this genus by Sasi Jyothsna et al. 2013. The complete genome sequence of the type strain of this species was determined and analysed. Genes characteristic for organisms capable of aerobic growth were identified, and the ability of the organism to grow under microaerobic and aerobic conditions was confirmed in two independent laboratories. The description of A. anaerophilus is thus emended and the wider ramifications of these findings are discussed.


Sign in / Sign up

Export Citation Format

Share Document