2d polymers
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farzaneh Shayeganfar ◽  
Rouzbeh Shahsavari

AbstractInterfacial encoded properties of polymer adlayers adsorbed on the graphene (GE) and silicon dioxide (SiO2) have been constituted a scaffold for the creation of new materials. The holistic understanding of nanoscale intermolecular interaction of 1D/2D polymer assemblies on substrate is the key to bottom-up design of molecular devices. We develop an integrated multidisciplinary approach based on electronic structure computation [density functional theory (DFT)] and big data mining [machine learning (ML)] in parallel with neural network (NN) and statistical analysis (SA) to design hybrid polymers from assembly on substrate. Here we demonstrate that interfacial pressure and structural deformation of polymer network adsorbed on GE and SiO2 offer unique directions for the fabrication of 1D/2D polymers using only a small number of simple molecular building blocks. Our findings serve as the platform for designing a wide range of typical inorganic heterostructures, involving noncovalent intermolecular interaction observed in many nanoscale electronic devices.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3310
Author(s):  
Shengda Liu ◽  
Jiayun Xu ◽  
Xiumei Li ◽  
Tengfei Yan ◽  
Shuangjiang Yu ◽  
...  

In the past few decades, enormous efforts have been made to synthesize covalent polymer nano/microstructured materials with specific morphologies, due to the relationship between their structures and functions. Up to now, the formation of most of these structures often requires either templates or preorganization in order to construct a specific structure before, and then the subsequent removal of previous templates to form a desired structure, on account of the lack of “self-error-correcting” properties of reversible interactions in polymers. The above processes are time-consuming and tedious. A template-free, self-assembled strategy as a “bottom-up” route to fabricate well-defined nano/microstructures remains a challenge. Herein, we introduce the recent progress in template-free, self-assembled nano/microstructures formed by covalent two-dimensional (2D) polymers, such as polymer capsules, polymer films, polymer tubes and polymer rings.


2021 ◽  
Vol 161 ◽  
pp. 104856
Author(s):  
A. Dieter Schlüter
Keyword(s):  

2021 ◽  
Author(s):  
Fan Hu ◽  
Xinwen Bi ◽  
Xinsheng Chen ◽  
Qingyan Pan ◽  
Yingjie Zhao

2021 ◽  
Vol 45 (16) ◽  
pp. 7117-7128
Author(s):  
Andrii Kliuikov ◽  
Oleksandr Bukrynov ◽  
Erik Čižmár ◽  
Lucia Váhovská ◽  
Svitlana Vitushkina ◽  
...  

Complexes [Co(biq)(μ1,5-dca)2]n (1) and [Ni(biq)(μ1,5-dca)2]n (2) (biq is 2,2′-biquinoline, dca is dicyanamide anion, N(CN)2−) have been characterized by crystal structure analysis, and spectral and magnetic measurements.


2020 ◽  
Vol 6 (33) ◽  
pp. eabb5976 ◽  
Author(s):  
Haoyuan Qi ◽  
Hafeesudeen Sahabudeen ◽  
Baokun Liang ◽  
Miroslav Položij ◽  
Matthew A. Addicoat ◽  
...  

Two-dimensional (2D) polymers hold great promise in the rational materials design tailored for next-generation applications. However, little is known about the grain boundaries in 2D polymers, not to mention their formation mechanisms and potential influences on the material’s functionalities. Using aberration-corrected high-resolution transmission electron microscopy, we present a direct observation of the grain boundaries in a layer-stacked 2D polyimine with a resolution of 2.3 Å, shedding light on their formation mechanisms. We found that the polyimine growth followed a “birth-and-spread” mechanism. Antiphase boundaries implemented a self-correction to the missing-linker and missing-node defects, and tilt boundaries were formed via grain coalescence. Notably, we identified grain boundary reconstructions featuring closed rings at tilt boundaries. Quantum mechanical calculations revealed that boundary reconstruction is energetically allowed and can be generalized into different 2D polymer systems. We envisage that these results may open up the opportunity for future investigations on defect-property correlations in 2D polymers.


2020 ◽  
Author(s):  
Thaksen Jadhav ◽  
Yuan Fang ◽  
Cheng-Hao Liu ◽  
Afshin Dadvand ◽  
Ehsan Hamzehpoor ◽  
...  

We report the first transformation between crystalline vinylene-linked two-dimensional (2D) polymers and crystalline cyclobutane-linked three-dimensional (3D) polymers. Specifically, absorption-edge irradiation of the 2D poly(arylenevinylene) covalent organic frameworks (COFs) results in topological [2+2] cycloaddition cross-linking the π-stacked layers in 3D COFs. The reaction is reversible and heating to 200°C leads to a cycloreversion while retaining the COF crystallinity. The resulting difference in connectivity is manifested in the change of mechanical and electronic properties, including exfoliation, blue-shifted UV-Vis absorption, altered luminescence, modified band structure and different acid-doping behavior. The Li-impregnated 2D and 3D COFs show a significant ion conductivity of 1.8×10<sup>−4</sup> S/cm and 3.5×10<sup>−5</sup> S/cm, respectively. Even higher room temperature proton conductivity of 1.7×10<sup>-2</sup> S/cm and 2.2×10<sup>-3</sup> S/cm was found for H<sub>2</sub>SO<sub>4</sub>-treated 2D and 3D COFs, respectively.


2020 ◽  
Author(s):  
Thaksen Jadhav ◽  
Yuan Fang ◽  
Cheng-Hao Liu ◽  
Afshin Dadvand ◽  
Ehsan Hamzehpoor ◽  
...  

We report the first transformation between crystalline vinylene-linked two-dimensional (2D) polymers and crystalline cyclobutane-linked three-dimensional (3D) polymers. Specifically, absorption-edge irradiation of the 2D poly(arylenevinylene) covalent organic frameworks (COFs) results in topological [2+2] cycloaddition cross-linking the π-stacked layers in 3D COFs. The reaction is reversible and heating to 200°C leads to a cycloreversion while retaining the COF crystallinity. The resulting difference in connectivity is manifested in the change of mechanical and electronic properties, including exfoliation, blue-shifted UV-Vis absorption, altered luminescence, modified band structure and different acid-doping behavior. The Li-impregnated 2D and 3D COFs show a significant ion conductivity of 1.8×10<sup>−4</sup> S/cm and 3.5×10<sup>−5</sup> S/cm, respectively. Even higher room temperature proton conductivity of 1.7×10<sup>-2</sup> S/cm and 2.2×10<sup>-3</sup> S/cm was found for H<sub>2</sub>SO<sub>4</sub>-treated 2D and 3D COFs, respectively.


Sign in / Sign up

Export Citation Format

Share Document