axial motion
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 43)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Yao Cai ◽  
Kate Grieve ◽  
Pedro Mecê

High-resolution ophthalmic imaging devices including spectral-domain and full-field optical coherence tomography (SDOCT and FFOCT) are adversely affected by the presence of continuous involuntary retinal axial motion. Here, we thoroughly quantify and characterize retinal axial motion with both high temporal resolution (200,000 A-scans/s) and high axial resolution (4.5 um), recorded over a typical data acquisition duration of 3 s with an SDOCT device over 14 subjects. We demonstrate that although breath-holding can help decrease large-and-slow drifts, it increases small-and-fast fluctuations, which is not ideal when motion compensation is desired. Finally, by simulating the action of an axial motion stabilization control loop, we show that a loop rate of 1.2 kHz is ideal to achieve 100% robust clinical in-vivo retinal imaging.


2021 ◽  
Author(s):  
Robnier Reyes Perez

This thesis presents an imaging tool consisting of an Optical Coherence Tomography (OCT) imaging system mounted on a collaborative robotic arm to enable axial motion compensation. Optical Coherence Tomography is a subsurface, high-resolution imaging modality used in neuroimaging to differentiate between pathological and non-pathological tissue. The motivation behind this project is to bring Optical Coherence Tomography to the operating room for neuroimaging to help with cancerous tissue differentiation and maximize the extent of tumor resection. However, neurosurgeons have expressed concern with respect to intracranial pressure (ICP) pulsation displacing the brain far off the optic axis of the imaging system so as to not be visible. The collaborative robotic arm compensates for sample motion along the optic axis using a Proportional controller to track the position of the peak intensity of the sample’s intensity profile, which generally corresponds to the sample surface. Collaborative robots have changed the robot industry paradigm becoming increasingly functional and safer than the previous generations of robotic arms. We present an OCT robot end-effector to test the feasibility of performing OCT imaging with the collaborative robot.


2021 ◽  
Author(s):  
Robnier Reyes Perez

This thesis presents an imaging tool consisting of an Optical Coherence Tomography (OCT) imaging system mounted on a collaborative robotic arm to enable axial motion compensation. Optical Coherence Tomography is a subsurface, high-resolution imaging modality used in neuroimaging to differentiate between pathological and non-pathological tissue. The motivation behind this project is to bring Optical Coherence Tomography to the operating room for neuroimaging to help with cancerous tissue differentiation and maximize the extent of tumor resection. However, neurosurgeons have expressed concern with respect to intracranial pressure (ICP) pulsation displacing the brain far off the optic axis of the imaging system so as to not be visible. The collaborative robotic arm compensates for sample motion along the optic axis using a Proportional controller to track the position of the peak intensity of the sample’s intensity profile, which generally corresponds to the sample surface. Collaborative robots have changed the robot industry paradigm becoming increasingly functional and safer than the previous generations of robotic arms. We present an OCT robot end-effector to test the feasibility of performing OCT imaging with the collaborative robot.


Author(s):  
Liangyan Zheng ◽  
Hanhua Zhu ◽  
Shidong Fan ◽  
Taiwei Yang ◽  
Jie Wu ◽  
...  

Increasingly prominent marine oil pollution problems highlight the importance of environmentally friendly lubricants in a ship. According to the actual navigation environment, the couple stress effect of environmentally friendly lubricants and axial motion of stern shaft is considered to establish a new hydrodynamic lubrication model, and finite difference method and Simpson integral method have been utilized to solve film pressure and bearing carrying capacity, respectively. Various performance characteristics were obtained for a range of couple stress parameters, misalignment angles and rotation speeds. The results show that axial motion and couple stress have opposite effects on film distribution, the minimum film thickness decreases with the increasing of axial velocity while the maximum film pressure significant reduce as couple stress parameter grows. The axial position corresponding to the maximum pressure is reduced from 0.51 to 0.49 m as axial velocity enhances from 0 to 0.8 m/s while couple stress parameter is 0, but nearly remains the place while couple stress is considered. Meanwhile, couple stress lubricants effectively restrain friction of journal caused by hydrodynamic effect, and the decreasing amplitude is nearly independent of axial velocity.


2021 ◽  
Author(s):  
Andres Flores-Valle ◽  
Johannes D Seelig

Two-photon imaging in behaving animals is typically accompanied by brain motion. For functional imaging experiments, for example with genetically encoded calcium indicators, such brain motion induces changes in fluorescence intensity. These motion related intensity changes or motion artifacts cannot easily be separated from neural activity induced signals. While lateral motion within the focal plane can be corrected by computationally aligning images, axial motion, out of the focal plane, cannot easily be corrected. Here, we develop an algorithm for axial motion correction for non-ratiometric calcium indicators taking advantage of simultaneous multi-plane imaging. Using at least two simultaneously recorded focal planes, the algorithm separates motion related and neural activity induced changes in fluorescence intensity. The developed motion correction approach allows axial motion estimation and correction at high frame rates for isolated structures in the imaging volume in vivo, such as sparse expression patterns in the fruit fly brain.


2021 ◽  
Author(s):  
Yiqian Wang ◽  
Alexandra Warter ◽  
Melina Cavichini-Cordeiro ◽  
William R. Freeman ◽  
Dirk-Uwe G. Bartsch ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Yves Fregnac ◽  
Benoit Le Bec ◽  
Xoana G. Troncoso ◽  
Christophe Desbois ◽  
Yannick Passarelli ◽  
...  

This study demonstrates the functional importance of the Surround context relayed laterally in V1 by the horizontal connectivity, in controlling the latency and the gain of the cortical response to the feedforward visual drive. We report here four main findings : 1) a centripetal apparent motion sequence results in a shortening of the spiking latency of V1 cells, when the orientation of the local inducer and the global motion axis are both co-aligned with the RF orientation preference; 2) this contextual effects grows with visual flow speed, peaking at 150-250 degrees per second until matching the propagation speed of horizontal connectivity (0.15-0.25 mm/ms); 3) For this speed range, axial sensitivity of V1 cells is tilted by 90 degrees to become co-aligned with the orientation preference axis; 4) the modulation strength by the surround context correlates with the spatiotemporal coherence of the apparent motion flow. Our results suggest an internally-generated binding process, linking local (orientation /position) and global (motion/direction) features as early as V1. This long-range diffusion process constitutes a plausible substrate in V1 of the human psychophysical bias in speed estimate for collinear motion. Since demonstrated in the anesthetized cat, this novel form of contextual control of the cortical transfer function is a built-in property in V1, whose expression does not require behavioral attention and top-down control from higher cortical areas. We propose that horizontal connectivity participates to the propagation of an internal prediction wave, linking contour co-alignment and global axial motion at an apparent speed in the range of saccadic-like eye-movements.


2021 ◽  
Author(s):  
Konstantina Ntarladima ◽  
Michael Pieber ◽  
Johannes Gerstmayr

Abstract The present paper addresses axially moving beams with co-moving concentrated masses while undergoing large deformations. For the numerical modeling, a novel beam finite element is introduced, which is based on the absolute nodal coordinate formulation extended with an additional Eulerian coordinate to represent the axial motion. The resulting formulation is well known as Arbitrary Lagrangian Eulerian (ALE) method, which is often used for axially moving beams and pipes conveying fluids. As compared to previous formulations, the present formulation allows us to introduce the Eulerian part by an independent coordinate, which fully incorporates the dynamics of the axial motion, while the shape functions remain independent of the beam coordinates and are thus constant. The proposed approach, which is derived from an extended version of Lagrange’s equations of motion, allows for the investigation of the stability of axially moving beams for a certain axial velocity and stationary state of large deformation. A multibody modeling approach allows us to extend the beam formulation for co-moving discrete masses, which represent concentrated masses attached to the beam, e.g., gondolas in ropeway systems, or transported masses in conveyor belts. Within numerical investigations we show that a larger number of discrete masses behaves similarly as the case of (continuously) distributed mass along the beam.


Author(s):  
Yuting Zuo ◽  
Hongjun Liu

Euler’s instability criterion is widely used in engineering to design a column. However, this criterion is not suitable for judging the instability of a three-dimensional printing process because the axial motion of the printing jet has to be considered. A variational principle is established, and an equivalent Eulerian load is obtained. The theoretical results show that a higher printing velocity makes the moving jet much more stable, and an experiment is designed to verify our theoretical prediction.


Sign in / Sign up

Export Citation Format

Share Document