convex mapping
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Mingyi Zeng ◽  
Fu-Gui Shi ◽  
Lan Wang

Abstract In this paper, a novel approach to the fuzzification of field is introduced. its characterizations are given. An L-fuzzy convexity can be induced by an L-fuzzy subfield degree, and an L-fuzzy field homomorphism is exactly an L-fuzzy convexity preserving mapping and an L-fuzzy convex-to-convex mapping.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1596
Author(s):  
Yan-Yan Dong ◽  
Fu-Gui Shi

In this paper, the notions of L-fuzzy subalgebra degree and L-subalgebras on an effect algebra are introduced and some characterizations are given. We use four kinds of cut sets of L-subsets to characterize the L-fuzzy subalgebra degree. We induce an L-fuzzy convexity by the L-fuzzy subalgebra degree, and we prove that a morphism between two effect algebras is an L-fuzzy convexity preserving mapping and a monomorphism is an L-fuzzy convex-to-convex mapping. Finally, it is proved that the set of all L-subalgebras on an effect algebra can form an L-convexity, and its L-convex hull formula is given.


2021 ◽  
Author(s):  
Alessandra Chirco ◽  
Corrado Benassi
Keyword(s):  

2021 ◽  
Vol 6 (12) ◽  
pp. 13272-13290
Author(s):  
Muhammad Tariq ◽  
◽  
Soubhagya Kumar Sahoo ◽  
Jamshed Nasir ◽  
Hassen Aydi ◽  
...  

<abstract><p>This paper deals with introducing and investigating a new convex mapping namely, $ n $-polynomial exponentially $ s $-convex. Here, we present some algebraic properties and some logical examples to validate the theory of newly introduced convexity. Some novel adaptations of the well-known Hermite-Hadamard and Ostrowski type inequalities for this convex function have been established. Additionally, some special cases of the newly established results are derived as well. Finally, as applications some new limits for special means of positive real numbers are given. These new outcomes yield a few generalizations of the earlier outcomes already published in the literature.</p></abstract>


2020 ◽  
Vol 5 (4) ◽  
pp. 3525-3546 ◽  
Author(s):  
Saima Rashid ◽  
◽  
Rehana Ashraf ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor ◽  
...  
Keyword(s):  

Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 727 ◽  
Author(s):  
Dongming Nie ◽  
Saima Rashid ◽  
Ahmet Ocak Akdemir ◽  
Dumitru Baleanu ◽  
Jia-Bao Liu

In this article, we aim to establish several inequalities for differentiable exponentially convex and exponentially quasi-convex mapping, which are connected with the famous Hermite–Hadamard (HH) integral inequality. Moreover, we have provided applications of our findings to error estimations in numerical analysis and higher moments of random variables.


2019 ◽  
Vol 62 (3) ◽  
pp. 671-679
Author(s):  
Jianfei Wang ◽  
Danli Zhang

AbstractSuppose that $D\subset \mathbb{C}$ is a simply connected subdomain containing the origin and $f(z_{1})$ is a normalized convex (resp., starlike) function on $D$. Let $$\begin{eqnarray}\unicode[STIX]{x1D6FA}_{N}(D)=\bigg\{(z_{1},w_{1},\ldots ,w_{k})\in \mathbb{C}\times \mathbb{C}^{n_{1}}\times \cdots \times \mathbb{C}^{n_{k}}:\Vert w_{1}\Vert _{p_{1}}^{p_{1}}+\cdots +\Vert w_{k}\Vert _{p_{k}}^{p_{k}}<\frac{1}{\unicode[STIX]{x1D706}_{D}(z_{1})}\bigg\},\end{eqnarray}$$ where $p_{j}\geqslant 1$, $N=1+n_{1}+\cdots +n_{k}$, $w_{1}\in \mathbb{C}^{n_{1}},\ldots ,w_{k}\in \mathbb{C}^{n_{k}}$ and $\unicode[STIX]{x1D706}_{D}$ is the density of the hyperbolic metric on $D$. In this paper, we prove that $$\begin{eqnarray}\unicode[STIX]{x1D6F7}_{N,1/p_{1},\ldots ,1/p_{k}}(f)(z_{1},w_{1},\ldots ,w_{k})=(f(z_{1}),(f^{\prime }(z_{1}))^{1/p_{1}}w_{1},\ldots ,(f^{\prime }(z_{1}))^{1/p_{k}}w_{k})\end{eqnarray}$$ is a normalized convex (resp., starlike) mapping on $\unicode[STIX]{x1D6FA}_{N}(D)$. If $D$ is the unit disk, then our result reduces to Gong and Liu via a new method. Moreover, we give a new operator for convex mapping construction on an unbounded domain in $\mathbb{C}^{2}$. Using a geometric approach, we prove that $\unicode[STIX]{x1D6F7}_{N,1/p_{1},\ldots ,1/p_{k}}(f)$ is a spiral-like mapping of type $\unicode[STIX]{x1D6FC}$ when $f$ is a spiral-like function of type $\unicode[STIX]{x1D6FC}$ on the unit disk.


2017 ◽  
Vol 66 (11) ◽  
pp. 9702-9711 ◽  
Author(s):  
Arne De Keyser ◽  
Matthias Vandeputte ◽  
Guillaume Crevecoeur

2016 ◽  
Vol 19 (4) ◽  
pp. 160-168
Author(s):  
Dinh Nguyen ◽  
Mo Hong Tran

In this paper we establish characterizations of the containment of the set {xX: xC,g(x)K}{xX: f (x)0}, where C is a closed convex subset of a locally convex Hausdorff topological vector space, X, K is a closed convex cone in another locally convex Hausdorff topological vector space and g:X Y is a K- convex mapping, in a reverse convex set, define by the proper, lower semicontinuous, convex function. Here, no constraint qualification condition or qualification condition are assumed. The characterizations are often called asymptotic Farkas-type results. The second part of the paper was devoted to variant Asymptotic Farkas-type results where the mapping is a convex mapping with respect to an extended sublinear function. It is also shown that under some closedness conditions, these asymptotic Farkas lemmas go back to non-asymptotic Farkas lemmas or stable Farkas lemmas established recently in the literature. The results can be used to study the optimization


Sign in / Sign up

Export Citation Format

Share Document