fast multipole algorithm
Recently Published Documents


TOTAL DOCUMENTS

295
(FIVE YEARS 26)

H-INDEX

34
(FIVE YEARS 2)

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2196
Author(s):  
Carlos Delgado ◽  
Eliseo García ◽  
Felipe Cátedra

This work details a technique tailored to the analysis of complex radome structures based on the non-overlapping separation of two different domains: antenna and radome. Both domains are analyzed isolated using the method of moments with the multilevel fast multipole algorithm (MoM-MLFMA) for the antenna domain and a modified characteristic basis function method with the multilevel fast multipole algorithm approach for the radome domain. An iterative procedure is then applied to compute the effect of each domain over the complementary domain. This approach usually converges into a few iterations, yielding very good results and significant efficiency improvements with respect to other efficient approaches such as a full-wave MoM-MLFMA analysis of the full problem. A realistic test case is included, considering a radome with an embedded frequency selective structure on one of its interfaces. The results show a very good agreement considering only three iterations between domains, requiring only one-third of the CPU-time needed by the conventional approach.


2020 ◽  
Vol 11 (1) ◽  
pp. 148
Author(s):  
Mingjie Pang ◽  
Han Wang ◽  
Hai Lin

A hybrid technique combining the multi-level fast multipole algorithm (MLFMA) and the modified adaptive division beam tracing (MADBT) is presented to analyze the radiation patterns of the antennas mounted on large-scale complex platforms. In this technique, the MLFMA is used to characterize the antenna and the transition region that cannot be analyzed accurately by high-frequency asymptotic methods. The MADBT method is used to analyze the contribution of the platforms to the entire radiation pattern by tracing all beams effectively. By applying the beam-based MADBT method instead of the conventional current-based physical optics (PO) method to the platforms, the multi-bounce effects inside the platforms are considered, which enhances the accuracy of the radiation patterns, especially for the complex platforms with corner reflector. An iteration method is proposed to model the interaction between the antennas and the platforms strictly. The proposed iterative MLFMA-MADBT method is mesh-independent and can avoid the matrix-vector production (MVP) of the iterative MLFMA-PO method in each iteration. These characters significantly reduce the memory and time consumption in computation while keeping high accuracy. Numerical results are presented to demonstrate the accuracy and efficiency of the proposed hybrid technique.


Sign in / Sign up

Export Citation Format

Share Document