human operators
Recently Published Documents


TOTAL DOCUMENTS

618
(FIVE YEARS 206)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Vol 38 (6) ◽  
pp. 1623-1635
Author(s):  
Muhammad Shoaib ◽  
Nasir Sayed

The number of security cameras positioned within the surrounding area has expanded, increasing the demand for automatic activity recognition systems. In addition to offline assessment and the issuance of an ongoing alarm in the case of aberrant behaviour, automatic activity detection systems can be employed in conjunction with human operators. In the proposed research framework, an ensemble of Mask Region-based Convolutional Neural Networks for key-point detection scheme, and LSTM based Recurrent Neural Network is used to create a deep neural network model (Mask RCNN) for recognizing violent activities (i.e. kicking, punching, etc.) of a single person. First of all, the key-points locations and ground-truth masks of humans in an image are selected using the selected region; the temporal information is extracted. Experimental results show that the ensemble model outperforms individual models. The proposed technique has a reasonable accuracy rate of 77.4 percent, 95.7 percent, and 88.2 percent, respectively, on the Weizmann, KTH, and our custom datasets. As the proposed effort applies to industry and in terms of security, it is beneficial to society.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Philippe Germain ◽  
Armine Vardazaryan ◽  
Nicolas Padoy ◽  
Aissam Labani ◽  
Catherine Roy ◽  
...  

Background: Diagnosing cardiac amyloidosis (CA) from cine-CMR (cardiac magnetic resonance) alone is not reliable. In this study, we tested if a convolutional neural network (CNN) could outperform the visual diagnosis of experienced operators. Method: 119 patients with cardiac amyloidosis and 122 patients with left ventricular hypertrophy (LVH) of other origins were retrospectively selected. Diastolic and systolic cine-CMR images were preprocessed and labeled. A dual-input visual geometry group (VGG ) model was used for binary image classification. All images belonging to the same patient were distributed in the same set. Accuracy and area under the curve (AUC) were calculated per frame and per patient from a 40% held-out test set. Results were compared to a visual analysis assessed by three experienced operators. Results: frame-based comparisons between humans and a CNN provided an accuracy of 0.605 vs. 0.746 (p < 0.0008) and an AUC of 0.630 vs. 0.824 (p < 0.0001). Patient-based comparisons provided an accuracy of 0.660 vs. 0.825 (p < 0.008) and an AUC of 0.727 vs. 0.895 (p < 0.002). Conclusion: based on cine-CMR images alone, a CNN is able to discriminate cardiac amyloidosis from LVH of other origins better than experienced human operators (15 to 20 points more in absolute value for accuracy and AUC), demonstrating a unique capability to identify what the eyes cannot see through classical radiological analysis.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8480
Author(s):  
Abdelrahman Allam ◽  
Medhat Moussa ◽  
Cole Tarry ◽  
Matthew Veres

Gears are a vital component in many complex mechanical systems. In automotive systems, and in particular vehicle transmissions, we rely on them to function properly on different types of challenging environments and conditions. However, when a gear is manufactured with a defect, the gear’s integrity can become compromised and lead to catastrophic failure. The current inspection process used by an automotive gear manufacturer in Guelph, Ontario, requires human operators to visually inspect all gear produced. Yet, due to the quantity of gears manufactured, the diverse array of defects that can arise, the time requirements for inspection, and the reliance on the operator’s inspection ability, the system suffers from poor scalability, and defects can be missed during inspection. In this work, we propose a machine vision system for automating the inspection process for gears with damaged teeth defects. The implemented inspection system uses a faster R-CNN network to identify the defects, and combines domain knowledge to reduce the manual inspection of non-defective gears by 66%.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8341
Author(s):  
Zebin Huang ◽  
Ziwei Wang ◽  
Weibang Bai ◽  
Yanpei Huang ◽  
Lichao Sun ◽  
...  

Human operators have the trend of increasing physical and mental workloads when performing teleoperation tasks in uncertain and dynamic environments. In addition, their performances are influenced by subjective factors, potentially leading to operational errors or task failure. Although agent-based methods offer a promising solution to the above problems, the human experience and intelligence are necessary for teleoperation scenarios. In this paper, a truncated quantile critics reinforcement learning-based integrated framework is proposed for human–agent teleoperation that encompasses training, assessment and agent-based arbitration. The proposed framework allows for an expert training agent, a bilateral training and cooperation process to realize the co-optimization of agent and human. It can provide efficient and quantifiable training feedback. Experiments have been conducted to train subjects with the developed algorithm. The performances of human–human and human–agent cooperation modes are also compared. The results have shown that subjects can complete the tasks of reaching and picking and placing with the assistance of an agent in a shorter operational time, with a higher success rate and less workload than human–human cooperation.


2021 ◽  
Vol 3 (4) ◽  
pp. 990-1008
Author(s):  
Joakim Olav Valand ◽  
Haris Kadragic ◽  
Steven Alexander Hicks ◽  
Vajira Lasantha Thambawita ◽  
Cise Midoglu ◽  
...  

The current gold standard for extracting highlight clips from soccer games is the use of manual annotations and clippings, where human operators define the start and end of an event and trim away the unwanted scenes. This is a tedious, time-consuming, and expensive task, to the extent of being rendered infeasible for use in lower league games. In this paper, we aim to automate the process of highlight generation using logo transition detection, scene boundary detection, and optional scene removal. We experiment with various approaches, using different neural network architectures on different datasets, and present two models that automatically find the appropriate time interval for extracting goal events. These models are evaluated both quantitatively and qualitatively, and the results show that we can detect logo and scene transitions with high accuracy and generate highlight clips that are highly acceptable for viewers. We conclude that there is considerable potential in automating the overall soccer video clipping process.


IFLA Journal ◽  
2021 ◽  
pp. 034003522110571
Author(s):  
Catherine Smith

Anxieties over automation and personal freedom are challenging libraries’ role as havens of intellectual freedom. The introduction of artificial intelligence into the resource description process creates an opportunity to reshape the digital information landscape—and loss of trust by library users. Resource description necessarily manipulates a library’s presentation of information, which influences the ways users perceive and interact with that information. Human catalogers inevitably introduce personal and cultural biases into their work, but artificial intelligence may perpetrate biases on a previously unseen scale. The automation of this process may be perceived as a greater threat than the manipulation produced by human operators. Librarians must understand the risks of artificial intelligence and consider what oversight and countermeasures are necessary to mitigate the harm to libraries and their users before ceding resource description to artificial intelligence in place of the “professional considerations” the IFLA Statement on Libraries and Intellectual Freedom calls for in providing access to library materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nizam Ud Din ◽  
Ji Yu

AbstractAdvances in the artificial neural network have made machine learning techniques increasingly more important in image analysis tasks. Recently, convolutional neural networks (CNN) have been applied to the problem of cell segmentation from microscopy images. However, previous methods used a supervised training paradigm in order to create an accurate segmentation model. This strategy requires a large amount of manually labeled cellular images, in which accurate segmentations at pixel level were produced by human operators. Generating training data is expensive and a major hindrance in the wider adoption of machine learning based methods for cell segmentation. Here we present an alternative strategy that trains CNNs without any human-labeled data. We show that our method is able to produce accurate segmentation models, and is applicable to both fluorescence and bright-field images, and requires little to no prior knowledge of the signal characteristics.


2021 ◽  
Vol 8 ◽  
Author(s):  
Peter Kazanzides ◽  
Balazs P. Vagvolgyi ◽  
Will Pryor ◽  
Anton Deguet ◽  
Simon Leonard ◽  
...  

Approaches to robotic manufacturing, assembly, and servicing of in-space assets range from autonomous operation to direct teleoperation, with many forms of semi-autonomous teleoperation in between. Because most approaches require one or more human operators at some level, it is important to explore the control and visualization interfaces available to those operators, taking into account the challenges due to significant telemetry time delay. We consider one motivating application of remote teleoperation, which is ground-based control of a robot on-orbit for satellite servicing. This paper presents a model-based architecture that: 1) improves visualization and situation awareness, 2) enables more effective human/robot interaction and control, and 3) detects task failures based on anomalous sensor feedback. We illustrate elements of the architecture by drawing on 10 years of our research in this area. The paper further reports the results of several multi-user experiments to evaluate the model-based architecture, on ground-based test platforms, for satellite servicing tasks subject to round-trip communication latencies of several seconds. The most significant performance gains were obtained by enhancing the operators’ situation awareness via improved visualization and by enabling them to precisely specify intended motion. In contrast, changes to the control interface, including model-mediated control or an immersive 3D environment, often reduced the reported task load but did not significantly improve task performance. Considering the challenges of fully autonomous intervention, we expect that some form of teleoperation will continue to be necessary for robotic in-situ servicing, assembly, and manufacturing tasks for the foreseeable future. We propose that effective teleoperation can be enabled by modeling the remote environment, providing operators with a fused view of the real environment and virtual model, and incorporating interfaces and control strategies that enable interactive planning, precise operation, and prompt detection of errors.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7898
Author(s):  
José Ricardo Sánchez-Ibáñez ◽  
Carlos J. Pérez-del-Pulgar ◽  
Alfonso García-Cerezo

Providing mobile robots with autonomous capabilities is advantageous. It allows one to dispense with the intervention of human operators, which may prove beneficial in economic and safety terms. Autonomy requires, in most cases, the use of path planners that enable the robot to deliberate about how to move from its location at one moment to another. Looking for the most appropriate path planning algorithm according to the requirements imposed by users can be challenging, given the overwhelming number of approaches that exist in the literature. Moreover, the past review works analyzed here cover only some of these approaches, missing important ones. For this reason, our paper aims to serve as a starting point for a clear and comprehensive overview of the research to date. It introduces a global classification of path planning algorithms, with a focus on those approaches used along with autonomous ground vehicles, but is also extendable to other robots moving on surfaces, such as autonomous boats. Moreover, the models used to represent the environment, together with the robot mobility and dynamics, are also addressed from the perspective of path planning. Each of the path planning categories presented in the classification is disclosed and analyzed, and a discussion about their applicability is added at the end.


2021 ◽  
Vol 15 ◽  
Author(s):  
Dimitris Papanagiotou ◽  
Gavriela Senteri ◽  
Sotiris Manitsaris

Collaborative robots are currently deployed in professional environments, in collaboration with professional human operators, helping to strike the right balance between mechanization and manual intervention in manufacturing processes required by Industry 4.0. In this paper, the contribution of gesture recognition and pose estimation to the smooth introduction of cobots into an industrial assembly line is described, with a view to performing actions in parallel with the human operators and enabling interaction between them. The proposed active vision system uses two RGB-D cameras that record different points of view of gestures and poses of the operator, to build an external perception layer for the robot that facilitates spatiotemporal adaptation, in accordance with the human's behavior. The use-case of this work is concerned with LCD TV assembly of an appliance manufacturer, comprising of two parts. The first part of the above-mentioned operation is assigned to a robot, strengthening the assembly line. The second part is assigned to a human operator. Gesture recognition, pose estimation, physical interaction, and sonic notification, create a multimodal human-robot interaction system. Five experiments are performed, to test if gesture recognition and pose estimation can reduce the cycle time and range of motion of the operator, respectively. Physical interaction is achieved using the force sensor of the cobot. Pose estimation through a skeleton-tracking algorithm provides the cobot with human pose information and makes it spatially adjustable. Sonic notification is added for the case of unexpected incidents. A real-time gesture recognition module is implemented through a Deep Learning architecture consisting of Convolutional layers, trained in an egocentric view and reducing the cycle time of the routine by almost 20%. This constitutes an added value in this work, as it affords the potential of recognizing gestures independently of the anthropometric characteristics and the background. Common metrics derived from the literature are used for the evaluation of the proposed system. The percentage of spatial adaptation of the cobot is proposed as a new KPI for a collaborative system and the opinion of the human operator is measured through a questionnaire that concerns the various affective states of the operator during the collaboration.


Sign in / Sign up

Export Citation Format

Share Document