particle finite element method
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 39)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Vol 11 (24) ◽  
pp. 11893
Author(s):  
Billy-Joe Bobach ◽  
Romain Boman ◽  
Diego Celentano ◽  
Vincent Terrapon ◽  
Jean-Philippe Ponthot

A simulation method is developed herein based on the particle finite element method (PFEM) to simulate processes with surface tension and phase change. These effects are important in the simulation of industrial applications, such as welding and additive manufacturing, where concentrated heat sources melt a portion of the material in a localized fashion. The aim of the study is to use this method to simulate such processes at the meso-scale and thereby gain a better understanding of the physics involved. The advantage of PFEM lies in its Lagrangian description, allowing for automatic tracking of interfaces and free boundaries, as well as its robustness and flexibility in dealing with multiphysics problems. A series of test cases is presented to validate the simulation method for these two effects in combination with temperature-driven convective flows in 2D. The PFEM-based method is shown to handle both purely convective flows and those with the Marangoni effect or melting well. Following exhaustive validation using solutions reported in the literature, the obtained results show that an overall satisfactory simulation of the complex physics is achieved. Further steps to improve the results and move towards the simulation of actual welding and additive manufacturing examples are pointed out.


Author(s):  
Janis Reinold ◽  
Günther Meschke

AbstractA mixed u–p edge-based smoothed particle finite element formulation is proposed for computational simulations of viscous flow. In order to improve the accuracy of the standard particle finite element method, edge-based and face-based smoothing operations on the displacement gradient are proposed for 2D and 3D analyses, respectively. Consequently, spatial integration involving the smoothing operator is performed on smoothing domains. The constitutive model is based on an elasto-viscoplastic formulation allowing for simulations of viscous fluid or fluid-like solid materials. The viscous response is modeled using an overstress function. The performance of the proposed edge-based smoothed particle finite element method (ES-PFEM) is demonstrated by several numerical benchmark studies, showing an excellent agreement with analytical and reference solutions and an improved accuracy and computational efficiency in comparison with results from the standard PFEM model. Finally, a numerical application of the ES-PFEM to the computational simulation of the extrusion process during 3D-concrete-printing is discussed.


2021 ◽  
pp. 073490412110397
Author(s):  
Julio Marti ◽  
Bernhard Schartel ◽  
Eugenio Oñate

The behavior of the cable jacket in fire characterized by the tendency to melt and drip constitutes a major source of fire hazard. The reason is that the melted material may convey the flame from one point to another, expanding fire and contributing to the fire load. In this article, the capability of a new computational strategy based on the particle finite element method for simulating a bench-scale cables burning test is analyzed. The use bench-scale test has been previously used to simulate the full-scale test described in EN 50399. As the air effect is neglected, a simple combustion model is included. The samples selected are two cables consisting of a copper core and differently flame retarded thermoplastic polyurethane sheets. The key modeling parameters were determined from different literature sources as well as experimentally. During the experiment, the specimen was burned under the test set-up condition recording the process and measuring the temperature evolution by means of three thermocouples. Next, the test was reproduced numerically and compared with a real fire test. The numerical results show that the particle finite element method can accurately predict the evolution of the temperature and the melting of the jacket.


Geomorphology ◽  
2021 ◽  
Vol 381 ◽  
pp. 107666
Author(s):  
Jingjing Meng ◽  
Xue Zhang ◽  
Stefano Utili ◽  
Eugenio Oñate

Sign in / Sign up

Export Citation Format

Share Document