hemolytic activity
Recently Published Documents


TOTAL DOCUMENTS

900
(FIVE YEARS 140)

H-INDEX

54
(FIVE YEARS 5)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 561
Author(s):  
Prapenpuksiri Rungsa ◽  
Steve Peigneur ◽  
Nisachon Jangpromma ◽  
Sompong Klaynongsruang ◽  
Jan Tytgat ◽  
...  

Antimicrobial peptides are an important class of therapeutic agent used against a wide range of pathogens such as Gram-negative and Gram-positive bacteria, fungi, and viruses. Mastoparan (MpVT) is an α-helix and amphipathic tetradecapeptide obtained from Vespa tropica venom. This peptide exhibits antibacterial activity. In this work, we investigate the effect of amino acid substitutions and deletion of the first three C-terminal residues on the structure–activity relationship. In this in silico study, the predicted structure of MpVT and its analog have characteristic features of linear cationic peptides rich in hydrophobic and basic amino acids without disulfide bonds. The secondary structure and the biological activity of six designed analogs are studied. The biological activity assays show that the substitution of phenylalanine (MpVT1) results in a higher antibacterial activity than that of MpVT without increasing toxicity. The analogs with the first three deleted C-terminal residues showed decreased antibacterial and hemolytic activity. The CD (circular dichroism) spectra of these peptides show a high content α-helical conformation in the presence of 40% 2,2,2- trifluoroethanol (TFE). In conclusion, the first three C-terminal deletions reduced the length of the α-helix, explaining the decreased biological activity. MpVTs show that the hemolytic activity of mastoparan is correlated to mean hydrophobicity and mean hydrophobic moment. The position and spatial arrangement of specific hydrophobic residues on the non-polar face of α-helical AMPs may be crucial for the interaction of AMPs with cell membranes.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 118
Author(s):  
Anqi Wang ◽  
Yuan Zheng ◽  
Wanxin Zhu ◽  
Liuxin Yang ◽  
Yang Yang ◽  
...  

Melittin (MEL) is a 26-amino acid polypeptide with a variety of pharmacological and toxicological effects, which include strong surface activity on cell lipid membranes, hemolytic activity, and potential anti-tumor properties. However, the clinical application of melittin is restricted due to its severe hemolytic activity. Different nanocarrier systems have been developed to achieve stable loading, side effects shielding, and tumor-targeted delivery, such as liposomes, cationic polymers, lipodisks, etc. In addition, MEL can be modified on nano drugs as a non-selective cytolytic peptide to enhance cellular uptake and endosomal/lysosomal escape. In this review, we discuss recent advances in MEL’s nano-delivery systems and MEL-modified nano drug carriers for cancer therapy.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
João Vitor Souza Ramada ◽  
Antonio Carlos Pereira de Menezes Filho ◽  
Matheus Vinicius Abadia Ventura ◽  
Hellen Regina Fernandes Batista-Ventura ◽  
Celiana Maria Ferrarini Triches ◽  
...  

Himatanthus obovatus is a tree species that has laticifers in its aerial organs, where it is used in folk medicine. The aim of this work was to evaluate the latex of H. obovatus regarding its phytochemical composition and biological activities. The latex was collected and lyophilized, yield (%) was carried out, phytochemical prospection for several groups, determination of the content of flavonoids, phenolics and total tannins, antioxidant activity in reducing DPPH, antifungal activity on the Candida genus, antibacterial for Escherichia coli, Staphylococcus aureus, Salmonella serovar Enteritidis and Thyphymurium and Enterococcus faecalis, hemolytic activity on human erythrocytes and cytotoxicity bioassay on Artemia salina. The latex yield was 19.05%, positive presence of several groups of phytocompounds was observed, total flavonoid content of 78.80 mg QE 100 g-1, total phenolic compounds of 166.51 mg AGE g 100-1, total tannins of 14.81 mg TAE 100 g-1, antioxidant activity IC50 = 178.87 µg mL-1, antifungal activity for all Candida strains and antibacterial only for E. coli and E. faecalis, hemolytic activity between 68-18% and cytotoxicity with LC50 = 433.97 µg mL-1 on A. salina. The latex of Himatanthus obovatus demonstrated in this study, important phytochemical data and biological activities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maria S. Zharkova ◽  
Olga Yu. Golubeva ◽  
Dmitriy S. Orlov ◽  
Elizaveta V. Vladimirova ◽  
Alexander V. Dmitriev ◽  
...  

Silver nanoparticles (AgNPs) and antimicrobial peptides or proteins (AMPs/APs) are both considered as promising platforms for the development of novel therapeutic agents effective against the growing number of drug-resistant pathogens. The observed synergy of their antibacterial activity suggested the prospect of introducing antimicrobial peptides or small antimicrobial proteins into the gelatinized coating of AgNPs. Conjugates with protegrin-1, indolicidin, protamine, histones, and lysozyme were comparatively tested for their antibacterial properties and compared with unconjugated nanoparticles and antimicrobial polypeptides alone. Their toxic effects were similarly tested against both normal eukaryotic cells (human erythrocytes, peripheral blood mononuclear cells, neutrophils, and dermal fibroblasts) and tumor cells (human erythromyeloid leukemia K562 and human histiocytic lymphoma U937 cell lines). The AMPs/APs retained their ability to enhance the antibacterial activity of AgNPs against both Gram-positive and Gram-negative bacteria, including drug-resistant strains, when conjugated to the AgNP surface. The small, membranolytic protegrin-1 was the most efficient, suggesting that a short, rigid structure is not a limiting factor despite the constraints imposed by binding to the nanoparticle. Some of the conjugated AMPs/APs clearly affected the ability of nanoparticle to permeabilize the outer membrane of Escherichia coli, but none of the conjugated AgNPs acquired the capacity to permeabilize its cytoplasmic membrane, regardless of the membranolytic potency of the bound polypeptide. Low hemolytic activity was also found for all AgNP-AMP/AP conjugates, regardless of the hemolytic activity of the free polypeptides, making conjugation a promising strategy not only to enhance their antimicrobial potential but also to effectively reduce the toxicity of membranolytic AMPs. The observation that metabolic processes and O2 consumption in bacteria were efficiently inhibited by all forms of AgNPs is the most likely explanation for their rapid and bactericidal action. AMP-dependent properties in the activity pattern of various conjugates toward eukaryotic cells suggest that immunomodulatory, wound-healing, and other effects of the polypeptides are at least partially transferred to the nanoparticles, so that functionalization of AgNPs may have effects beyond just modulation of direct antibacterial activity. In addition, some conjugated nanoparticles are selectively toxic to tumor cells. However, caution is required as not all modulatory effects are necessarily beneficial to normal host cells.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7577
Author(s):  
Shangwen He ◽  
Qian Deng ◽  
Bingbing Liang ◽  
Feike Yu ◽  
Xiaohan Yu ◽  
...  

The rapid emergence of bacterial coinfection caused by cytosolic bacteria has become a huge threat to public health worldwide. Past efforts have been devoted to discover the broad-spectrum antibiotics, while the emergence of antibiotic resistance encourages the development of antibacterial agents. In essence, bacterial virulence is a factor in antibiotic tolerance. However, the discovery and development of new antibacterial drugs and special antitoxin drugs is much more difficult in the antibiotic resistance era. Herein, we hypothesize that antitoxin hemolytic activity can serve as a screening principle to select antibacterial drugs to combat coinfection from natural products. Being the most abundant natural drug of plant origins, flavonoids were selected to assess the ability of antibacterial coinfections in this paper. Firstly, we note that four flavonoids, namely, baicalin, catechin, kaempferol, and quercetin, have previously exhibited antibacterial abilities. Then, we found that baicalin, kaempferol, and quercetin have better inhibitions of hemolytic activity of Hla than catechin. In addition, kaempferol and quercetin, have therapeutic effectivity for the coinfections of Staphylococcus aureus and Pseudomonas aeruginosa in vitro and in vivo. Finally, our results indicated that kaempferol and quercetin therapied the bacterial coinfection by inhibiting S. aureus α-hemolysin (Hla) and reduced the host inflammatory response. These results suggest that antitoxins may play a promising role as a potential target for screening flavonoids to combat bacterial coinfection.


2021 ◽  
pp. 132216
Author(s):  
Sunil L. Dhonnar ◽  
Rahul A. More ◽  
Vishnu A. Adole ◽  
Bapu S. Jagdale ◽  
Nutan V. Sadgir ◽  
...  

2021 ◽  
Vol 46 ◽  
pp. 21-28
Author(s):  
Peter Lorenz ◽  
Jürgen Conrad ◽  
Iris Klaiber ◽  
Marek Bunse ◽  
Tanja Pfeiffer ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Markos Tadele ◽  
Solomon M. Abay ◽  
Peter Asaga ◽  
Eyasu Makonnen ◽  
Asrat Hailu

Abstract Introduction Leishmania aethiopica (L. aethiopica) is responsible for different forms of cutaneous leishmaniasis (CL) in Ethiopia. Treatment heavily depends on limited drugs, together with drawbacks like toxicity and microbial resistance. The current research aimed to investigate in vitro growth inhibitory activity of Medicines for Malaria Ventures - Pathogen Box (MMV - PB) compounds against L. aethiopica clinical isolate. Methodology Four hundred MMV – PB compounds were screened against L. aethiopica using resazurin based colourimetric assay. Compounds with > 70% inhibition were further tested using macrophage based intracellular amastigote assay. Cytotoxic and hemolytic activity of candidate hits were assessed on THP1- cells and sheep red blood cells (RBCs), respectively. In vitro drug interaction study was also conducted for the most potent hit using the combination index method. Results At the test concentration of 1 μM, twenty-three compounds showed > 50% inhibition of promastigotes parasite growth, of which 11 compounds showed > 70% inhibition. The 50% growth inhibition (IC50) of the 11 compounds was ranged from 0.024 to 0.483 μM in anti-promastigote assay and from 0.064 to 0.899 μM in intracellular amastigote assay. Candidate compounds demonstrated good safety on sheep RBCs and THP-1 cell lines. MMV688415 demonstrated a slight hemolytic activity on sheep RBC (5.3% at 25 μM) and THP-1 cell line (CC20 = 25 μM) while MMV690102 inhibited half of THP-1 cells at 36.5 μM (selectivity index = 478). No synergistic activity was observed from the combinations of MMV690102 and amphotericin B (CI > 1), and MMV690102 and Pentamidine (CI > 1) at lower and higher combination points. Conclusion The present study identified a panel of compounds that can be used as a novel starting point for lead optimization. MMV690102 appears to be the most potent inhibitor against L. aethiopica promastigotes and amastigotes. Future works should investigate the antileishmanial mechanism of action and in vivo antileishmanial activities of identified hits.


Sign in / Sign up

Export Citation Format

Share Document