zirconium hydrides
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 15)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 203 ◽  
pp. 111158
Author(s):  
Ting Jia ◽  
Hari P. Paudel ◽  
David J. Senor ◽  
Yuhua Duan

2021 ◽  
Vol 197 ◽  
pp. 110547
Author(s):  
Paul Eyméoud ◽  
Fabienne Ribeiro ◽  
Rémy Besson ◽  
Guy Tréglia

Inorganics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 29
Author(s):  
Jiayong Zhang ◽  
Yongqiang Cheng ◽  
Alexander I. Kolesnikov ◽  
Jerry Bernholc ◽  
Wenchang Lu ◽  
...  

The anharmonic phonon behavior in zirconium hydrides and deuterides, including ϵ-ZrH2, γ-ZrH, and γ-ZrD, has been investigated from aspects of inelastic neutron scattering (INS) and lattice dynamics calculations within the framework of density functional theory (DFT). The harmonic model failed to reproduce the spectral features observed in the experimental data, indicating the existence of anharmonicity in those materials and the necessity of further explanations. Here, we present a detailed study on the anharmonicity in zirconium hydrides/deuterides by exploring the 2D potential energy surface of hydrogen/deuterium atoms and solving the corresponding 2D single-particle Schrödinger equation to obtain the eigenfrequencies, which are then convoluted with the instrument resolution. The convoluted INS spectra qualitatively describe the anharmonic peaks in the experimental INS spectra and demonstrate that the anharmonicity originates from the deviations of hydrogen potentials from quadratic behavior in certain directions; the effects are apparent for the higher-order excited vibrational states, but small for the ground and first excited states.


2021 ◽  
Vol 2 (2) ◽  
pp. 105-113
Author(s):  
Jonathan Wormald ◽  
Michael Zerkle ◽  
Jesse Holmes

Zirconium hydride (ZrHx) is a moderator material used in TRIGA and other reactors that may exist in multiple phases with varying stoichiometry, which include the δ phase and the ϵ phase. Current ENDF/B-VIII.0 ZrHx thermal scattering law (TSL) evaluations do not distinguish between phases. These sub-libraries were generated with the LEAPR module of NJOY using historic phonon spectra derived from a central force model and assume incoherent elastic scattering for both bound hydrogen and zirconium, which neglects the effects of crystal structures important for scattering from zirconium bound in ZrHx. In this work, the TSLs for hydrogen and zirconium bound in δ-ZrHx and ϵ-ZrH2 were generated from phonon spectra derived from modern ab initio lattice dynamics methods and ab initio molecular dynamics. Subsequently, TSLs for hydrogen and zirconium in ZrHx and ZrH2 were generated using the Full Law Analysis Scattering System Hub (FLASSH) code. The built-in generalized coherent elastic routine was used to generate the previously neglected elastic contribution from zirconium for this material. The present TSLs provide both a re-evaluation of the current ZrH sub-libraries and expansion of the set of TSLs available for the examination of neutrons in systems with zirconium hydride, permitting explicit treatment of δ and ϵ phases.


Author(s):  
Luca Reali ◽  
Mark R. Wenman ◽  
Adrian P. Sutton ◽  
Daniel S. Balint

2020 ◽  
Vol 27 ◽  
pp. 155-159
Author(s):  
Ondřej Libera ◽  
Patricie Halodová ◽  
Petra Gávelová ◽  
Jakub Krejčí

Zirconium alloys are being commonly used as a material of choice for nuclear fuel claddings in water cooled nuclear reactors for decades due to their good corrosion resistance and low neutron absorption. However, the increasing operation conditions of next generation nuclear reactors (Gen-V) in terms of higher temperatures, pressures and higher neutron flux requires evaluation of further Zr cladding usability. The embrittlement of Zr claddings due to hydrogen pickup from reactor coolant is one of the issues for its potential use in Gen-IV reactors. Nanoindentation is an effective tool for analysis of the change of mechanical properties of hydrogen enriched Zr claddings from localised material volume. Zirconium alloy Zr-1Nb (E110) with experimentally induced hydrides was analysed by the means of nanoindentation. Zirconium hydrides were formed in the material after exposure in high temperature water autoclave. The optimized methodology of surface preparation suitable for nanoindentation is described and the resulting surface quality is discussed. The nanoindentation measurements were performed as an array of 10x10 indents across areas with hydrides. Depth dependent hardness and reduced modulus values measured by nanoindentation were compared between the material with no hydrogen content, low hydrogen content (127 ppm H) and high hydrogen content (397 ppm H). Complementary microhardness measurements at HV 0.1 were performed on all materials for bulk material hardness comparison.


2020 ◽  
Vol 101 (22) ◽  
Author(s):  
Paul Eyméoud ◽  
Fabienne Ribeiro ◽  
Azzam Charaf-Eddin ◽  
Rémy Besson ◽  
Guy Tréglia

MRS Advances ◽  
2020 ◽  
Vol 5 (11) ◽  
pp. 559-567
Author(s):  
Luca Reali ◽  
Saïd El Chamaa ◽  
Daniel S. Balint ◽  
Catrin M. Davies ◽  
Mark R. Wenman

ABSTRACTCrack initiation in zirconium alloys is an important issue for the safety of water-cooled fission reactors. Zirconium hydrides that precipitate in service are potential crack nucleation sites. In this work, the deformation and cracking of zirconium hydrides was studied during room temperature deformation of a Zircaloy-4 tensile sample up to fracture. The sample contained a hydrogen concentration of 100 ± 20 ppm. The main aims of this study were to better understand the mechanisms behind the hydride fracture in a polycrystalline matrix, and to identify at which point in the deformation of the Zr matrix the first hydrides break. Cracks thus nucleated may coalesce and propagate through the hydrided Zr-alloy. Scanning electron microscopy (SEM) images of a number of hydrides, both intergranular and intragranular, were taken at discrete increments of deformation during an interrupted tensile test. The results show that cracks in hydrides tend to always occur normal to the applied load, signalling the importance of the external stress. However, evidence is also provided to support the hypothesis that internal stresses generated by microstructural constraints may lead to the fracture of some intergranular hydrides.


Sign in / Sign up

Export Citation Format

Share Document