hausdorff operator
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 25)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Naqash Sarfraz ◽  
Ferít Gürbüz

Abstract In this paper, the boundedness of the Hausdorff operator on weak central Morrey space is obtained. Furthermore, we investigate the weak bounds of the p-adic fractional Hausdorff operator on weighted p-adic weak Lebesgue spaces. We also obtain the sufficient condition of commutators of the p-adic fractional Hausdorff operator by taking symbol function from Lipschitz spaces. Moreover, strong type estimates for fractional Hausdorff operator and its commutator on weighted p-adic Lorentz spaces are also acquired.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Kieu Huu Dung ◽  
Dao Van Duong ◽  
Nguyen Minh Chuong

2021 ◽  
Vol 19 (1) ◽  
pp. 316-328
Author(s):  
Yangkendi Deng ◽  
Xingsong Zhang ◽  
Dunyan Yan ◽  
Mingquan Wei

Abstract This paper is devoted to the weak and strong estimates for the linear and multilinear fractional Hausdorff operators on the Heisenberg group H n {{\mathbb{H}}}^{n} . A sharp strong estimate for T Φ m {T}_{\Phi }^{m} is obtained. As an application, we derive the sharp constant for the product Hardy operator on H n {{\mathbb{H}}}^{n} . Some weak-type ( p , q ) \left(p,q) ( 1 ≤ p ≤ ∞ ) \left(1\le p\le \infty ) estimates for T Φ , β {T}_{\Phi ,\beta } are also obtained. As applications, we calculate some sharp weak constants for the fractional Hausdorff operator on the Heisenberg group. Besides, we give an explicit weak estimate for T Φ , β → m {T}_{\Phi ,\overrightarrow{\beta }}^{m} under some mild assumptions on Φ \Phi . We extend the results of Guo et al. [Hausdorff operators on the Heisenberg group, Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 11, 1703–1714] to the fractional setting.


2020 ◽  
pp. 1-18
Author(s):  
Alberto Debernardi ◽  
Elijah Liflyand

Abstract Truncating the Fourier transform averaged by means of a generalized Hausdorff operator, we approximate functions and the adjoint to that Hausdorff operator of the given function. We find estimates for the rate of approximation in various metrics in terms of the parameter of truncation and the components of the Hausdorff operator. Explicit rates of approximation of functions and comparison with approximate identities are given in the case of continuous functions from the class $\text {Lip }\alpha $ .


2020 ◽  
Vol 18 (1) ◽  
pp. 496-511
Author(s):  
Amna Ajaib ◽  
Amjad Hussain

Abstract In this article, we study the commutators of Hausdorff operators and establish their boundedness on the weighted Herz spaces in the setting of the Heisenberg group.


Sign in / Sign up

Export Citation Format

Share Document