tilting pad
Recently Published Documents


TOTAL DOCUMENTS

870
(FIVE YEARS 140)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Vol 164 ◽  
pp. 108245
Author(s):  
Yihua Wu ◽  
Lin An ◽  
Kai Feng ◽  
Yuanlong Cao ◽  
Hanqing Guan

Lubricants ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Edward H. Smith

The active control of hydrodynamic bearings is beginning to receive more attention in the pursuit of lower power losses and reduced maintenance. This paper presents a method by which, from simple measurements, rich information can be deduced from a running bearing that can used to modify the operating parameters of the unit. The bearing is a line-pivot, unidirectional, steadily loaded, directly lubricated tilting pad thrust bearing. This control is achieved by designing an Observer whose inputs include the output measurement(s) from the bearing. The Observer is, in some ways, an inverse model of the bearing (or Plant) that runs in parallel to the bearing and estimates the states of the bearing, such as the applied load, pivot height, minimum film thickness, maximum temperature, effective temperature and power loss. These estimated parameters can then be used in a control algorithm to modify bearing parameters such as inlet temperature or pivot location. It is demonstrated that disturbances in the load on the bearing can be detected simply by measuring a representative temperature in the bearing or changes in pivot height. Appropriate corrective action can then be employed. Whilst only steady-state operation is considered, the method could be developed to study time-varying situations.


Author(s):  
Mohammad Hojjati ◽  
Seyed Younes Farzanmehr ◽  
H. M. Navaz ◽  
Hassan Haddadpour

In this paper, a modified partial derivative method is developed to predict the linear and nonlinear dynamic coefficients of tilting-pad journal bearings with journal and pad perturbation. To this end, Reynolds equation and its boundary conditions along with equilibrium equations of the pad are used. Finite difference, partial derivative method, and perturbation technique have been employed simultaneously for solving these equations. The accuracy of the results is investigated by comparing the linear dynamic coefficients of three types of tilting-pad journal bearings with those published the literature. It is shown that the nonlinear dynamic coefficients depend on Sommerfeld number, eccentricity ratio, and length to diameter ratio. Similar to the case of linear dynamic coefficients of TPJB, it is observed that the eccentricity ratio effects on nonlinear dynamic coefficients are more notable when the eccentricity ratio is higher than 0.8 or less than 0.2.


2021 ◽  
pp. 107397
Author(s):  
Xiaofei Jin ◽  
Peng Xia ◽  
Zhansheng Liu ◽  
Wensheng Ma ◽  
Pu Zhang ◽  
...  

Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 273
Author(s):  
Enrico Ciulli ◽  
Riccardo Ferraro ◽  
Paola Forte ◽  
Alice Innocenti ◽  
Matteo Nuti

The paper deals with the experimental characterization of different 280 mm diameter tilting pad journal bearings for turbomachines using a dedicated test rig. The test articles were a 5-pad Direct Lube Rocker Pivot bearing, a 5-pad Flooded Rocker Pivot bearing, and a 4-pad Flooded Ball and Socket Pivot bearing. The three bearings were tested in their specific design range of operating conditions. Their static and dynamic behavior was investigated as a function of different operating parameters. In particular, the assumed journal center eccentricity and pads temperature were measured, and the power loss determined as a function of angular speed for different static loads. Dynamic stiffness and damping coefficients were determined as a function of excitation frequency for different speeds and loads. The experimental results were compared showing the influence of the operating parameters, configuration, and oil supply.


Sign in / Sign up

Export Citation Format

Share Document