translocation carrier
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 0)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shaoqin Zhang ◽  
Jianjiang Zhu ◽  
Hong Qi ◽  
Limei Xu ◽  
Lirong Cai ◽  
...  

Abstract Introduction De novo balanced reciprocal translocations mosaicism in fetus conceived using preimplantation genetic testing from a different balanced translocation carrier parent has been rarely reported. Methods Chromosomal microarray analysis, karyotype analysis and fluorescent in situ hybridization were performed to verify the type and heredity of the rearrangement. STR analysis was conducted to identify potential contamination and verify kinship. In addition, a local BLAST engine was performed to locate potentially homologous segments which might contribute to the translocation in breakpoints of chromosome. Results A rare de novo balanced reciprocal translocations mosaicism mos 46,XY,t(1;3)(q42;q25)[40]/46,XY[39] was diagnosed in a fetus conceived using preimplantation genetic testing due to a 46,XY,t(12;14)(q22;q13) balanced translocation carrier father through multiplatform genetic techniques. Two of the largest continuous high homology segments were identified in chromosomal band 1q42.12 and 3q25.2. At the 21-months follow up, infant has achieved all psychomotor development milestones as well as growth within the normal reference range. Conclusion We present a prenatal diagnosis of a rare de novo balanced reciprocal translocations mosaicism in a fetus who conceived by preimplantation genetic testing. The most reasonable driving mechanism was that a de novo mitotic error caused by nonallelic homologous recombination between 1q42.12 and 3q25.2 in a zygote within the first or early cell divisions, which results in a mosaic embryo with the variant present in a half proportion of cells.


2021 ◽  
Author(s):  
Shaoqin Zhang ◽  
jianjiang zhu ◽  
Hong Qi ◽  
Limei Xu ◽  
Lirong Cai ◽  
...  

Abstract IntroductionPreimplantation genetic testing (PGT) had widely been applied in reciprocal translocation carriers to improve the clinical outcome of assisted reproduction. De novo mosaicism balanced reciprocal translocations in fetus conceived using PGT from a balanced translocation carrier parent has been rarely reported, and the driving mechanism is not clearly. MethodsChromosomal microarray analysis (CMA) , karyotype analysis and fluorescent in situ hybridization (FISH) were performed to verify the type and heredity of the rearrangement. STR analysis was used to identify potential contamination as well as kinship verification and identification. ResultsA rare de novo mosaicism balanced reciprocal translocation t(1,3)(q42;q25) in fetus conceived using PGT-SR from a t(12;14)(q22;q13) balanced translocation carrier father was been diagnosed by multiplatform genetic techniques. At 31 weeks and 2 days of gestation, premature delivery was caused by uncontrollable uterine contractions. At the 21-months follow up, infant has achieved all psychomotor development milestones as well as growth within the normal reference range. ConclusionPGT cases still need close observation in prenatal diagnosis and long-term follow-up.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marion Bonneau ◽  
Shane T. O’ Sullivan ◽  
Miguel A. Gonzalez-Lozano ◽  
Paul Baxter ◽  
Phillippe Gautier ◽  
...  

AbstractA balanced t(1;11) translocation that directly disrupts DISC1 is linked to schizophrenia and affective disorders. We previously showed that a mutant mouse, named Der1, recapitulates the effect of the translocation upon DISC1 expression. Here, RNAseq analysis of Der1 mouse brain tissue found enrichment for dysregulation of the same genes and molecular pathways as in neuron cultures generated previously from human t(1;11) translocation carriers via the induced pluripotent stem cell route. DISC1 disruption therefore apparently accounts for a substantial proportion of the effects of the t(1;11) translocation. RNAseq and pathway analysis of the mutant mouse predicts multiple Der1-induced alterations converging upon synapse function and plasticity. Synaptosome proteomics confirmed that the Der1 mutation impacts synapse composition, and electrophysiology found reduced AMPA:NMDA ratio in hippocampal neurons, indicating changed excitatory signalling. Moreover, hippocampal parvalbumin-positive interneuron density is increased, suggesting that the Der1 mutation affects inhibitory control of neuronal circuits. These phenotypes predict that neurotransmission is impacted at many levels by DISC1 disruption in human t(1;11) translocation carriers. Notably, genes implicated in schizophrenia, depression and bipolar disorder by large-scale genetic studies are enriched among the Der1-dysregulated genes, just as we previously observed for the t(1;11) translocation carrier-derived neurons. Furthermore, RNAseq analysis predicts that the Der1 mutation primarily targets a subset of cell types, pyramidal neurons and interneurons, previously shown to be vulnerable to the effects of common schizophrenia-associated genetic variants. In conclusion, DISC1 disruption by the t(1;11) translocation may contribute to the psychiatric disorders of translocation carriers through commonly affected pathways and processes in neurotransmission.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Olga Tšuiko ◽  
Tuuli Dmitrijeva ◽  
Katrin Kask ◽  
Pille Tammur ◽  
Neeme Tõnisson ◽  
...  

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Ye-Qing Qian ◽  
Xiao-Ying Fu ◽  
Xiao-Qing Wang ◽  
Yu-Qin Luo ◽  
Min Chen ◽  
...  

2017 ◽  
Vol 07 (01) ◽  
pp. 035-039 ◽  
Author(s):  
Gabrielle Geddes ◽  
Donald Basel ◽  
Dana Schippman ◽  
John Grignon ◽  
Peter vanTuinen ◽  
...  

AbstractWe report a 4-month-old male proband with a history of prominent forehead, hypertelorism, ear abnormalities, micrognathia, hypospadias, and multiple cardiac abnormalities. Initial microarray analysis detected a concurrent 7p21.3-p22.3 duplication and 13q33.2-q34 deletion indicating an unbalanced rearrangement. However, subsequent conventional cytogenetic studies only revealed what appeared to be a balanced t(12;20)(q24.33;p12.2). Fluorescence in situ hybridization (FISH) using chromosome-specific subtelomere probes confirmed the presence of an unbalanced der(13)t(7;13)(p21.3;q33.2) and balanced t(12;20)(q24.33;p12.2), both of maternal origin. In addition to our unique clinical findings, this case highlights the benefits and limitations of both conventional cytogenetic studies and microarray analysis and how FISH complements each methodology.


Sign in / Sign up

Export Citation Format

Share Document