truncated form
Recently Published Documents


TOTAL DOCUMENTS

484
(FIVE YEARS 55)

H-INDEX

55
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Daisuke Kaida ◽  
Takayuki Satoh ◽  
Ken Ishida ◽  
Rei Yoshimoto

Pre-mRNA splicing is indispensable for eukaryotic gene expression. Splicing inhibition causes cell cycle arrest and cell death, which are the reasons of potent anti-tumor activity of splicing inhibitors. Here, we found that truncated proteins are involved in cell cycle arrest and cell death upon splicing inhibition. We analyzed pre-mRNAs accumulated in the cytoplasm where translation occurs, and found that a truncated form of the p27 CDK inhibitor, named p27*, is translated from pre-mRNA and accumulated in G2 arrested cells. Overexpression of p27* caused G2 phase arrest through inhibiting CDK-cyclin complexes. Conversely, knockout of p27* accelerated resumption of cell proliferation after washout of splicing inhibitor. Interestingly, p27* was resistant to proteasomal degradation. We propose that cells produce truncated proteins with different nature to the original proteins via pre-mRNA translation only under splicing deficient conditions to response to the splicing deficient conditions.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Vladimir Martyanov

It is offered to use for solving NP-complete (difficult) tasks a modification of methods for satisfying the constraint (CS) by including automatic proof of theorems (APT), and programming in constraints — generation of Turing's machine (TM). Currently, CS uses AP in a truncated form (logical programming), and it is suggested using the method of invariant transformations (MIT), which is a full-fledged APT. In addition, it is offered to use CS methods to generate TM solving NP-difficult tasks recorded on the TM tape, which is an extension of programming capabilities in constraints.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anjan K. Bongoni ◽  
Ingela B. Vikstrom ◽  
Jennifer L. McRae ◽  
Evelyn J. Salvaris ◽  
Nella Fisicaro ◽  
...  

AbstractThe complement system is a potent mediator of ischemia–reperfusion injury (IRI), which detrimentally affects the function and survival of transplanted kidneys. Human complement receptor 1 (HuCR1) is an integral membrane protein that inhibits complement activation by blocking the convertases that activate C3 and C5. We have previously reported that CSL040, a truncated form of recombinant soluble HuCR1 (sHuCR1), has enhanced complement inhibitory activity and improved pharmacokinetic properties compared to the parent molecule. Here, we compared the capacity of CSL040 and full-length sHuCR1 to suppress complement-mediated organ damage in a mouse model of warm renal IRI. Mice were treated with two doses of CSL040 or sHuCR1, given 1 h prior to 22 min unilateral renal ischemia and again 3 h later. 24 h after reperfusion, mice treated with CSL040 were protected against warm renal IRI in a dose-dependent manner, with the highest dose of 60 mg/kg significantly reducing renal dysfunction, tubular injury, complement activation, endothelial damage, and leukocyte infiltration. In contrast, treatment with sHuCR1 at a molar equivalent dose to 60 mg/kg CSL040 did not confer significant protection. Our results identify CSL040 as a promising therapeutic candidate to attenuate renal IRI and demonstrate its superior efficacy over full-length sHuCR1 in vivo.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chen Lyu ◽  
Stefano Da Vela ◽  
Youssra Al-Hilaly ◽  
Karen E. Marshall ◽  
Richard Thorogate ◽  
...  

Tau35 is a truncated form of tau found in human brain in a subset of tauopathies. Tau35 expression in mice recapitulates key features of human disease, including progressive increase in tau phosphorylation, along with cognitive and motor dysfunction. The appearance of aggregated tau suggests that Tau35 may have structural properties distinct from those of other tau species that could account for its pathological role in disease. To address this hypothesis, we performed a structural characterization of monomeric and aggregated Tau35 and compared the results to those of two longer isoforms, 2N3R and 2N4R tau. We used small angle X-ray scattering to show that Tau35, 2N3R and 2N4R tau all behave as disordered monomeric species but Tau35 exhibits higher rigidity. In the presence of the poly-anion heparin, Tau35 increases thioflavin T fluorescence significantly faster and to a greater extent than full-length tau, demonstrating a higher propensity to aggregate. By using atomic force microscopy, circular dichroism, transmission electron microscopy and X-ray fiber diffraction, we provide evidence that Tau35 aggregation is mechanistically and morphologically similar to previously reported tau fibrils but they are more densely packed. These data increase our understanding of the aggregation inducing properties of clinically relevant tau fragments and their potentially damaging role in the pathogenesis of human tauopathies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nan Liu ◽  
Xin Li ◽  
Maofeng Wang ◽  
Fengyu Zhang ◽  
Chuandong Wang ◽  
...  

Billions of people suffer from dental caries every year in spite of the effort to reduce the prevalence over the past few decades. Streptococcus mutans is the leading member of a specific group of cariogenic bacteria that cause dental caries. S. mutans forms biofilm, which is highly resistant to harsh environment, host immunity, and antimicrobial treatments. In this study, we found that S. mutans biofilm is highly resistant to both antimicrobial agents and lysozyme. DexA70, the truncated form of DexA (amino acids 100–732), a dextranase in S. mutans, prevents S. mutans biofilm formation and disassembles existing biofilms within minutes at nanomolar concentrations when supplied exogenously. DexA70 treatment markedly enhances biofilm sensitivity to antimicrobial agents and lysozyme, indicating its great potential in combating biofilm-related dental caries.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bruno Querat

The glycoprotein hormones (GPH) are heterodimers composed of a common α subunit and a specific β subunit. They act by activating specific leucine-rich repeat G protein-coupled receptors. However, individual subunits have been shown to elicit responses in cells devoid of the receptor for the dimeric hormones. The α subunit is involved in prolactin production from different tissues. The human chorionic gonadotropin β subunit (βhCG) plays determinant roles in placentation and in cancer development and metastasis. A truncated form of the thyrotropin (TSH) β subunit is also reported to have biological effects. The GPH α- and β subunits are derived from precursor genes (gpa and gpb, respectively), which are expressed in most invertebrate species and are still represented in vertebrates as GPH subunit paralogs (gpa2 and gpb5, respectively). No specific receptor has been found for the vertebrate GPA2 and GPB5 even if their heterodimeric form is able to activate the TSH receptor in mammals. Interestingly, GPA and GPB are phylogenetically and structurally related to cysteine-knot growth factors (CKGF) and particularly to a group of antagonists that act independently on any receptor. This review article summarizes the observed actions of individual GPH subunits and presents the current hypotheses of how these actions might be induced. New approaches are also proposed in light of the evolutionary relatedness with antagonists of the CKGF family of proteins.


2021 ◽  
Author(s):  
Jiawei Liao ◽  
Julei Ma ◽  
Xingguo Zhang ◽  
Peng Shu

Abstract Background Constitutively activated STAT3 (Signal transducer and activator of transcription 3) has been seen in Multiple Myeloma (MM). However, STAT3 regulator in MM remains enigmatic. Methods Herein, we applied public dataset analysis and identified USP25 (Ubiquitin carboxyl-terminal hydrolase 25) was a potential regulator of STAT3. We further applied western blot and IP to confirm the relation between USP25 and STAT3. Furthermore, we used cell cycle assay to assess the effect USP25 on MM cell cycle.RestultsUSP25 highly expressed in MM CD138+ cells, and support MM cell proliferation. In protein level, USP25 take part in IL-6/USP25/STAT3 axis and could directly down-regulated STAT3 ubiquitination. Using truncated form of USP25, we also proved UCH (Ubiquitin carboxyl-terminal hydrolase) domain of USP25 is critical for USP25-STAT3 binding, UIM (Ubiquitin interacting motif) domain is required for STAT3 ubiquitination, we further proved cell cycle changed by USP25 required STAT3 and cyclinD1, suggesting USP25 inhibition is promising in STAT3, cyclinD1 abnormal MM patients.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Junya Adachi ◽  
Yoshihiko Aoki ◽  
Tadashi Tatematsu ◽  
Hiroki Goto ◽  
Atsuo Nakayama ◽  
...  

Congenital tooth agenesis is a common anomaly in humans. We investigated the etiology of human tooth agenesis by exome analysis in Japanese patients, and found a previously undescribed heterozygous deletion (NM_002448.3(MSX1_v001):c.433_449del) in the first exon of the MSX1 gene. The deletion leads to a frameshift and generates a premature termination codon. The truncated form of MSX1, namely, p.(Trp145Leufs*24) lacks the homeodomain, which is crucial for transcription factor function.


2021 ◽  
Author(s):  
Chen Lyu ◽  
Stefano Da Vela ◽  
Youssra K Al-Hilaly ◽  
Karen Marshall ◽  
Richard Thorogate ◽  
...  

Tau35 is a truncated form of tau found in human brain in a subset of tauopathies. Tau35 expression in mice recapitulates key features of human disease, including progressive increase in tau phosphorylation, along with cognitive and motor dysfunction. The appearance of aggregated tau suggests that Tau35 may have structural properties distinct from those of other tau species that could account for its pathological role in disease. To address this hypothesis, we performed a structural characterization of monomeric and aggregated Tau35 and compared the results to those of two longer isoforms, 2N3R and 2N4R tau. We used small angle X-ray scattering to show that Tau35, 2N3R and 2N4R tau all behave as disordered monomeric species but Tau35 exhibits higher rigidity. In the presence of the poly-anion heparin, Tau35 increases thioflavin T fluorescence significantly faster and to a greater extent than full-length tau, demonstrating a higher propensity to aggregate. We used atomic force microscopy, transmission electron microscopy and X-ray fiber diffraction to demonstrate that Tau35 aggregates are morphologically similar to previously reported tau fibrils but they are more densely packed. These data increase our understanding of the aggregation inducing properties of clinically relevant tau fragments and their potentially damaging role in the pathogenesis of human tauopathies.


Sign in / Sign up

Export Citation Format

Share Document