polarity establishment
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 23)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Melissa A Pickett ◽  
Maria D. Sallee ◽  
Victor F. Naturale ◽  
Deniz Akpinaroglu ◽  
Joo Lee ◽  
...  

Apico-basolateral polarization is essential for epithelial cells to function as selective barriers and transporters, and to provide mechanical resiliency to organs. Epithelial polarity is established locally, within individual cells to establish distinct apical, junctional, and basolateral domains, and globally, within a tissue where cells coordinately orient their apico-basolateral axes. Using live imaging of endogenously tagged proteins and tissue specific protein depletion in the C. elegans embryonic intestine, we found that local and global polarity establishment are temporally and genetically separable. Local polarity is initiated prior to global polarity and is robust to perturbation. PAR-3 is required for global polarization across the intestine but is not required for local polarity establishment as small groups of cells are able to correctly establish polarized domains in PAR-3 depleted intestines in an HMR-1/E-cadherin dependent manner. Despite belonging to the same apical protein complex, we additionally find that PAR-3 and PKC-3/aPKC have distinct roles in the establishment and maintenance of local and global polarity. Together, our results indicate that different mechanisms are required for local and global polarity establishment in vivo.


2021 ◽  
pp. 101354
Author(s):  
Vlad Tocan ◽  
Junya Hayase ◽  
Sachiko Kamakura ◽  
Akira Kohda ◽  
Shouichi Ohga ◽  
...  

2021 ◽  
Author(s):  
Chang Liu ◽  
Yi Zhang ◽  
Haiyun Ren

Abstract Pollen germination is critical for the reproduction of flowering plants. Formin-dependent actin polymerization plays vital roles in vesicle trafficking and polarity establishment during this process. However, how formin-mediated actin assembly is regulated in vivo remains poorly understood. Here, we investigated the function of reproductive profilin 4 and 5 (PRF4 and PRF5) in polarity establishment during pollen germination in Arabidopsis thaliana. Our data showed that the actin filament content was reduced in the prf4 prf5 double mutant and substantially increased in both PRF4- and PRF5-overexpressing pollen grains. By contrast, the positive effect of profilin in promoting actin polymerization was abolished in a formin mutant, atfh5. In addition, the interaction between Arabidopsis formin homology 5 (AtFH5) and actin filaments was attenuated and the trafficking of AtFH5-labeled vesicles was slowed in prf4 prf5 pollen grains. Formation of the collar-like structure at the germination pore was also defective in prf4 prf5 pollen grains as the fast assembly of actin filaments was impaired. Together, our results suggest that PRF4 and PRF5 regulate vesicle trafficking and polarity establishment during pollen germination by promoting AtFH5-mediated actin polymerization and enhancing the interaction between AtFH5 and actin filaments.


2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Victor Tarabykin

SNARE vesicle targeting complex controls the polarity of neuronal progenitors. Kunii et al. (2020. J. Cell Biol. https://doi.org/10.1083/jcb.201910080) show that the SNAP23–VAMP8–Syntaxin1B complex is required for membrane targeting of N-cadherin and formation of adherence junction complexes in radial glia neuronal progenitors, the major prerequisite of cell polarity establishment.


2020 ◽  
Vol 6 (4) ◽  
pp. 285
Author(s):  
Adela Martin-Vicente ◽  
Ana C. O. Souza ◽  
Ashley V. Nywening ◽  
Wenbo Ge ◽  
Jarrod R. Fortwendel

Cell polarization comprises highly controlled processes and occurs in most eukaryotic organisms. In yeast, the processes of budding, mating and filamentation require coordinated mechanisms leading to polarized growth. Filamentous fungi, such as Aspergillus fumigatus, are an extreme example of cell polarization, essential for both vegetative and pathogenic growth. A major regulator of polarized growth in yeast is the small GTPase Rsr1, which is essential for bud-site selection. Here, we show that deletion of the putative A. fumigatus ortholog, rsrA, causes only a modest reduction of growth rate and delay in germ tube emergence. In contrast, overexpression of rsrA results in a morphogenesis defect, characterized by a significant delay in polarity establishment followed by the establishment of multiple growth axes. This aberrant phenotype is reversed when rsrA expression levels are decreased, suggesting that correct regulation of RsrA activity is crucial for accurate patterning of polarity establishment. Despite this finding, deletion or overexpression of rsrA resulted in no changes of A. fumigatus virulence attributes in a mouse model of invasive aspergillosis. Additional mutational analyses revealed that RsrA cooperates genetically with the small GTPase, RasA, to support A. fumigatus viability.


Rice Science ◽  
2020 ◽  
Vol 27 (6) ◽  
pp. 468-479
Author(s):  
Wang Jiajia ◽  
Xu Jing ◽  
Qian Qian ◽  
Zhang Guangheng

2020 ◽  
Vol 133 (18) ◽  
pp. jcs253971

ABSTRACTFirst Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Anthony Rossi is joint first author on ‘Phosphoregulation of the cytokinetic protein Fic1 contributes to fission yeast growth polarity establishment’, published in JCS. Anthony is a PhD student in the lab of Kathleen L. Gould at Vanderbilt University, Nashville, TN, USA, investigating how cytokinetic components coordinate with each other to achieve cytokinesis.


Sign in / Sign up

Export Citation Format

Share Document