differentiable structure
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Michael Ruzhansky ◽  
Daulti Verma

In this paper, we continue our investigations giving the characterization of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardy’s original inequality. This is a continuation of our paper (Ruzhansky & Verma 2018. Proc. R. Soc. A 475 , 20180310 ( doi:10.1098/rspa.2018.0310 )) where we treated the case p  ≤  q . Here the remaining range p  >  q is considered, namely, 0 <  q  <  p , 1 <  p  < ∞. We give several examples of the obtained results, finding conditions on the weights for integral Hardy inequalities on homogeneous groups, as well as on hyperbolic spaces and on more general Cartan–Hadamard manifolds. As in the first part of this paper, we do not need to impose doubling conditions on the metric.


2021 ◽  
Vol 9 (1) ◽  
pp. 254-268
Author(s):  
Rafael Espínola García ◽  
Luis Sánchez González

Abstract We consider vector valued mappings defined on metric measure spaces with a measurable differentiable structure and study both approximations by nicer mappings and regular extensions of the given mappings when defined on closed subsets. Therefore, we propose a first approach to these problems, largely studied on Euclidean and Banach spaces during the last century, for first order differentiable functions de-fined on these metric measure spaces.


2019 ◽  
Vol 110 (1) ◽  
pp. 83-103 ◽  
Author(s):  
James D. E. Grant ◽  
Michael Kunzinger ◽  
Clemens Sämann ◽  
Roland Steinbauer

Abstract We demonstrate the breakdown of several fundamentals of Lorentzian causality theory in low regularity. Most notably, chronological futures (defined naturally using locally Lipschitz curves) may be non-open and may differ from the corresponding sets defined via piecewise $$C^1$$C1-curves. By refining the notion of a causal bubble from Chruściel and Grant (Class Quantum Gravity 29(14):145001, 2012), we characterize spacetimes for which such phenomena can occur, and also relate these to the possibility of deforming causal curves of positive length into timelike curves (push-up). The phenomena described here are, in particular, relevant for recent synthetic approaches to low-regularity Lorentzian geometry where, in the absence of a differentiable structure, causality has to be based on locally Lipschitz curves.


Author(s):  
Michael Ruzhansky ◽  
Daulti Verma

In this note, we give several characterizations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardy's original inequality. We give examples obtaining new weighted Hardy inequalities on R n , on homogeneous groups, on hyperbolic spaces and on Cartan–Hadamard manifolds. We note that doubling conditions are not required for our analysis.


2016 ◽  
Vol 27 (02) ◽  
pp. 1650002
Author(s):  
Esteban Andruchow ◽  
Lázaro Recht

We define a Larotonda space as a quotient space [Formula: see text] of the unitary groups of [Formula: see text]-algebras [Formula: see text] with a faithful unital conditional expectation [Formula: see text] In particular, [Formula: see text] is complemented in [Formula: see text], a fact which implies that [Formula: see text] has [Formula: see text] differentiable structure, with the topology induced by the norm of [Formula: see text]. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a [Formula: see text]-invariant Finsler metric in [Formula: see text]. Given a point [Formula: see text] and a tangent vector [Formula: see text], we consider the problem of whether the geodesic [Formula: see text] of the linear connection satisfying these initial data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Omar Anza Hafsa ◽  
Jean-Philippe Mandallena

AbstractWe give an extension of the theory of relaxation of variational integrals in classical Sobolev spaces to the setting of metric Sobolev spaces. More precisely, we establish a general framework to deal with the problem of finding an integral representation for “relaxed” variational functionals of variational integrals of the calculus of variations in the setting of metric measure spaces. We prove integral representation theorems, both in the convex and non-convex case, which extend and complete previous results in the setting of euclidean measure spaces to the setting of metric measure spaces. We also show that these integral representation theorems can be applied in the setting of Cheeger–Keith's differentiable structure.


2014 ◽  
Vol 66 (4) ◽  
pp. 721-742 ◽  
Author(s):  
E. Durand-Cartagena ◽  
L. Ihnatsyeva ◽  
R. Korte ◽  
M. Szumańska

AbstractWe study approximately differentiable functions on metric measure spaces admitting a Cheeger differentiable structure. The main result is a Whitney-type characterization of approximately differentiable functions in this setting. As an application, we prove a Stepanov-type theorem and consider approximate differentiability of Sobolev, BV, and maximal functions.


2013 ◽  
Vol 62 (10) ◽  
pp. 856-861 ◽  
Author(s):  
I. Baragaña ◽  
F. Puerta ◽  
I. Zaballa

2013 ◽  
Vol 63 (4) ◽  
Author(s):  
Shilpa Gondhali ◽  
Parameswaran Sankaran

AbstractWe consider quotients of complex Stiefel manifolds by finite cyclic groups whose action is induced by the scalar multiplication on the corresponding complex vector space. We obtain a description of their tangent bundles, compute their mod p cohomology and obtain estimates for their span (with respect to their standard differentiable structure). We compute the Pontrjagin and Stiefel-Whitney classes of these manifolds and give applications to their stable parallelizability.


2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Esteban Andruchow ◽  
Gustavo Corach ◽  
Mostafa Mbekhta

AbstractFor a fixed n > 2, we study the set Λ of generalized idempotents, which are operators satisfying T n+1 = T. Also the subsets Λ†, of operators such that T n−1 is the Moore-Penrose pseudo-inverse of T, and Λ*, of operators such that T n−1 = T* (known as generalized projections) are studied. The local smooth structure of these sets is examined.


Sign in / Sign up

Export Citation Format

Share Document