alternating link
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 30 (01) ◽  
pp. 2150004
Author(s):  
Yuanan Diao ◽  
Van Pham

It is known that the writhe calculated from any reduced alternating link diagram of the same (alternating) link has the same value. That is, it is a link invariant if we restrict ourselves to reduced alternating link diagrams. This is due to the fact that reduced alternating link diagrams of the same link are obtainable from each other via flypes and flypes do not change writhe. In this paper, we introduce several quantities that are derived from Seifert graphs of reduced alternating link diagrams. We prove that they are “writhe-like” invariants, namely they are not general link invariants, but are invariants when restricted to reduced alternating link diagrams. The determination of these invariants are elementary and non-recursive so they are easy to calculate. We demonstrate that many different alternating links can be easily distinguished by these new invariants, even for large, complicated knots for which other invariants such as the Jones polynomial are hard to compute. As an application, we also derive an if and only if condition for a strongly invertible rational link.


2021 ◽  
Vol -1 (-1) ◽  
Author(s):  
Joel Hass ◽  
Abigail Thompson ◽  
Anastasiia Tsvietkova

Author(s):  
Hamid Abchir ◽  
Mohammed Sabak

We construct an infinite family of links which are both almost alternating and quasi-alternating from a given either almost alternating diagram representing a quasi-alternating link, or connected and reduced alternating tangle diagram. To do that we use what we call a dealternator extension which consists in replacing the dealternator by a rational tangle extending it. We note that all non-alternating and quasi-alternating Montesinos links can be obtained in that way. We check that all the obtained quasi-alternating links satisfy Conjecture 3.1 of Qazaqzeh et al. (JKTR 22 (6), 2013), that is the crossing number of a quasi-alternating link is less than or equal to its determinant. We also prove that the converse of Theorem 3.3 of Qazaqzeh et al. (JKTR 24 (1), 2015) is false.


2020 ◽  
Vol 29 (11) ◽  
pp. 2050072
Author(s):  
Nafaa Chbili ◽  
Kirandeep Kaur

Champanerkar and Kofman [Twisting quasi-alternating links, Proc. Amer. Math. Soc. 137(7) (2009) 2451–2458] introduced an interesting way to construct new examples of quasi-alternating links from existing ones. Actually, they proved that replacing a quasi-alternating crossing [Formula: see text] in a quasi-alternating link by a rational tangle of same type yields a new quasi-alternating link. This construction has been extended to alternating algebraic tangles and applied to characterize all quasi-alternating Montesinos links. In this paper, we extend this technique to any alternating tangle of same type as [Formula: see text]. As an application, we give new examples of quasi-alternating knots of 13 and 14 crossings. Moreover, we prove that the Jones polynomial of a quasi-alternating link that is obtained in this way has no gap if the original link has no gap in its Jones polynomial. This supports a conjecture introduced in [N. Chbili and K. Qazaqzeh, On the Jones polynomial of quasi-alternating links, Topology Appl. 264 (2019) 1–11], which states that the Jones polynomial of any prime quasi-alternating link except [Formula: see text]-torus links has no gap.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050077
Author(s):  
Keiju Kato

The interior polynomial is a Tutte-type invariant of bipartite graphs, and a part of the HOMFLY polynomial of a special alternating link coincides with the interior polynomial of the Seifert graph of the link. We extend the interior polynomial to signed bipartite graphs, and we show that, in the planar case, it is equal to the maximal [Formula: see text]-degree part of the HOMFLY polynomial of a naturally associated link. Note that the latter can be any oriented link. This result fits into a program aimed at deriving the HOMFLY polynomial from Floer homology. We also establish some other, more basic properties of the signed interior polynomial. For example, the HOMFLY polynomial of the mirror image of [Formula: see text] is given by [Formula: see text]. This implies a mirroring formula for the signed interior polynomial in the planar case. We prove that the same property holds for any bipartite graph and the same graph with all signs reversed. The proof relies on Ehrhart reciprocity applied to the so-called root polytope. We also establish formulas for the signed interior polynomial inspired by the knot theoretical notions of flyping and mutation. This leads to new identities for the original unsigned interior polynomial.


2019 ◽  
Vol 168 (3) ◽  
pp. 415-434
Author(s):  
YUANAN DIAO ◽  
GÁBOR HETYEI ◽  
PENGYU LIU

AbstractIt is well known that the minimum crossing number of an alternating link equals the number of crossings in any reduced alternating link diagram of the link. This remarkable result is an application of the Jones polynomial. In the case of the braid index of an alternating link, Yamada showed that the minimum number of Seifert circles over all regular projections of a link equals the braid index. Thus one may conjecture that the number of Seifert circles in a reduced alternating diagram of the link equals the braid index of the link, but this turns out to be false. In this paper we prove the next best thing that one could hope for: we characterise exactly those alternating links for which their braid indices equal the numbers of Seifert circles in their corresponding reduced alternating link diagrams. More specifically, we prove that if D is a reduced alternating link diagram of an alternating link L, then b(L), the braid index of L, equals the number of Seifert circles in D if and only if GS(D) contains no edges of weight one. Here GS(D), called the Seifert graph of D, is an edge weighted simple graph obtained from D by identifying each Seifert circle of D as a vertex of GS(D) such that two vertices in GS(D) are connected by an edge if and only if the two corresponding Seifert circles share crossings between them in D and that the weight of the edge is the number of crossings between the two Seifert circles. This result is partly based on the well-known MFW inequality, which states that the a-span of the HOMFLY polynomial of L is a lower bound of 2b(L)−2, as well as the result of Yamada relating the minimum number of Seifert circles over all link diagrams of L to b(L).


2018 ◽  
Vol 27 (08) ◽  
pp. 1850047
Author(s):  
Shunsuke Sakai

We give a characterization of alternating link exteriors in terms of cubed complexes. To this end, we introduce the concept of a “signed BW cubed-complex”, and give a characterization for a signed BW cubed-complex to have the underlying space which is homeomorphic to an alternating link exterior.


2016 ◽  
Vol 16 (6) ◽  
pp. 3209-3270 ◽  
Author(s):  
Marc Lackenby ◽  
Jessica Purcell

2016 ◽  
Vol 25 (09) ◽  
pp. 1641014
Author(s):  
Józef H. Przytycki

We show that every alternating link of two components and [Formula: see text] crossings can be reduced by [Formula: see text]-moves to the trivial link or the Hopf link. It answers the question asked in one of the last papers by Slavik Jablan.


Author(s):  
Joel Hass ◽  
Abigail Thompson ◽  
Anastasiia Tsvietkova

Sign in / Sign up

Export Citation Format

Share Document