spinel limn2o4
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 40)

H-INDEX

36
(FIVE YEARS 4)

Author(s):  
Hongxiang Ji ◽  
Liubin Ben ◽  
Shan Wang ◽  
Zhongzhu Liu ◽  
Robson Monteiro ◽  
...  

Author(s):  
М.О. Chaban ◽  
◽  
L.M. Rozhdestvenska ◽  
О.V. Palchik ◽  
L.M. Ponomarova ◽  
...  

A method for obtaining nanocomposite sorbents, which are selective towards Li+ ions, has been proposed. The samples were based on adsorptive-active anatase, the selective component being lithium-manganese spinel LiMn2O4. This component was synthesized preliminarily, its nanoparticles were added to the sol of insoluble titanium hydroxocomplexes, and the nanocomposite was precipitated from this suspension and calcined at 5000C. A number of sorbents with different molar ratio of Ti:Mn were prepared via this procedure; they were investigated by means of chemical analysis, X-ray diffraction analysis, optical microscopy, transmission electron microscopy and scanning electron microscopy. The size of nanocrystallites was 20–30 nm. An increase in the spinel amount caused a decrease in the sorbent grain size; however, they the sorbent grains were mechanically durable due to TiO2 which was a binder. Adsorption of Li+ from the solution containing an excess of Na+ ions was studied. The optimal amount of LiMn2O4 (13%) was determined. The sample was obtained in the form of rather large grains (0.3 mm) and the selectivity coefficient Li+/Na+ was about 500. The sorbent was regenerated by a 1 M HNO3 solution without manganese leakage. After 10 cycles of sorption-desorption, the concentrate was obtained. This concentrate can be used for Li2CO3 precipitation.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 825
Author(s):  
Pinelopi Angelopoulou ◽  
Spyros Kassavetis ◽  
Joan Papavasiliou ◽  
Dimitris Karfaridis ◽  
Grzegorz Słowik ◽  
...  

The present work addresses the issues related to the capacity fading of spinel LiMn2O4, such as Mn leaching and Jahn–Teller distortion and suggests an advanced TiN-coated LiAl0.1Mn1.9O4 (LAMO) cathode material as an electrode for lithium-ion batteries. TiN coating layers with the same thickness but a different porosity cover the LiAl0.1Mn1.9O4 electrode via reactive magnetron sputtering, and present promising electrochemical behavior. In contrast with the pristine LiAl0.1Mn1.9O4, the dense TiN-coated LiAl0.1Mn1.9O4 electrode demonstrates a remarkable long-term cycling by reducing the contact area of the electrode/electrolyte interface, resulting in structure stabilization.


Author(s):  
Shu Zhang ◽  
Wentao Deng ◽  
Roya Momen ◽  
Shouyi Yin ◽  
Jun Chen ◽  
...  

Spinel LiMn2O4 is a promising cathode material for lithium-ion batteries ascribed to its steady bulk structure and abundant manganese sources. Nevertheless, grievous capacity decay due to the Jahn-Teller effect and...


Sign in / Sign up

Export Citation Format

Share Document