Abstract
Our study area is located near island Sumbawa, Sumba, Flores, West Timor, Indonesia and East Timor, popularly known as Sunda-Banda arc transition zone. The tectonic setting is mainly controlled by the movement of the oceanic lithosphere Indo-Australian plate subducting the Eurasian plate and Northward migration of Australian continental lithosphere into western Banda-arc in the region of Flores, Sumba and Timor island. We tried to image velocity structure beneath these regions using regional events and tomography inversion model. We collected 5 years of regional events from the Indonesian Agency of Meteorology, Climatology and Geophysics. In total, we reserved 3186 events recorded on 29 stations. For data processing, we used fast marching method as ray tracing between sources and receiver. We then employed subspace inversion as the tomography procedure to estimate the best velocity model representing the tectonic model in the region. Hypocenter data distribution is concentrated on shallow parts of the region and along the Benioff zone down to a maximum depth of 400 km. One of challenge of this study is that although events are abundance, the stations used are mostly located onshore and does not extend in the south-north direction that leads us to under determined problem in the inversion process. However, checker-board models show most our target area can be retrieved to its initial model with sign of smearing effects shown start from a depth of 50 km. After six iteration and optimized selection of damping and smoothing parameters, we observed low velocity anomaly under Bali, Lombok, Sumba, East Nusa Tenggara at shallow depth that may be related with volcanic activity. Deeper low anomaly can also be seen that may be related with partial melting process. A band of fast velocity is clearly seen that goes deepen to the north depicting subducting slabs own to a depth of 300 km. We also observed a possible of fast velocity in the northern part of our stations at shallow depth that we believe may represent the back arc thrust.