malliavin calculus
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 42)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Vol 5 (1) ◽  
pp. 371-379
Author(s):  
Nguyen Thu Hang ◽  
◽  
Pham Thi Phuong Thuy ◽  

The aim of this paper is to study the tail distribution of the CEV model driven by Brownian motion and fractional Brownian motion. Based on the techniques of Malliavin calculus and a result established recently in [<a href="#1">1</a>], we obtain an explicit estimate for tail distributions.


2021 ◽  
Vol 273 (1340) ◽  
Author(s):  
Le Chen ◽  
Yaozhong Hu ◽  
David Nualart

In this paper, we establish a necessary and sufficient condition for the existence and regularity of the density of the solution to a semilinear stochastic (fractional) heat equation with measure-valued initial conditions. Under a mild cone condition for the diffusion coefficient, we establish the smooth joint density at multiple points. The tool we use is Malliavin calculus. The main ingredient is to prove that the solutions to a related stochastic partial differential equation have negative moments of all orders. Because we cannot prove u ( t , x ) ∈ D ∞ u(t,x)\in \mathbb {D}^\infty for measure-valued initial data, we need a localized version of Malliavin calculus. Furthermore, we prove that the (joint) density is strictly positive in the interior of the support of the law, where we allow both measure-valued initial data and unbounded diffusion coefficient. The criteria introduced by Bally and Pardoux are no longer applicable for the parabolic Anderson model. We have extended their criteria to a localized version. Our general framework includes the parabolic Anderson model as a special case.


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Jirô Akahori ◽  
Tomo Matsusita ◽  
Yasufumi Nitta

Author(s):  
Farai Julius Mhlanga

The paper is devoted to the problem of obtaining weighting functions for the Greeks of an option price written on a stock whose dynamics are of pure jump type. The problem is motivated by the work of Fourni\'e et al. [8, 9], who considered the price sensitivities of a frictionless market and proved that Greeks can be computed as the expectation of the product of the discounted payoff $\Phi$ and a suitable weighted function, i.e.Greek = E[Φ(XT)weight]. Since the weighting functions are random variables that need to be explicitly computed on each specific case, we establish necessary and sufficient conditions to be satisfied. The method used relied on the Malliavin calculus for Levy processes.


2021 ◽  
pp. 1-9
Author(s):  
Naho Akiyama ◽  
Toshihiro Yamada

The paper gives discrete conditional integration by parts formula using a Malliavin calculus approach in discrete-time setting. Then the discrete Bismut formula is introduced for asymmetric random walk model and asymmetric exponential process. In particular, a new formula for delta hedging process is obtained as an extension of the Malliavin derivative representation of the delta where the conditional integration by parts formula plays a role in the proof.


2021 ◽  
pp. 2150054
Author(s):  
Jiang Yu Nguwi ◽  
Nicolas Privault

We derive a characterization of equilibrium controls in continuous-time, time-inconsistent control (TIC) problems using the Malliavin calculus. For this, the classical duality analysis of adjoint BSDEs is replaced with the Malliavin integration by parts. This results into a necessary and sufficient maximum principle which is applied to a linear-quadratic TIC problem, recovering previous results obtained by duality analysis in the mean-variance case, and extending them to the linear-quadratic setting. We also show that our results apply beyond the linear-quadratic case by treating the generalized Merton problem.


Sign in / Sign up

Export Citation Format

Share Document