ground state entropy
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 1)

H-INDEX

15
(FIVE YEARS 0)

Author(s):  
Dacheng Ma ◽  
Yan Qi ◽  
An Du

We connected the two ends of a finite spin-1/2 antiferromagnetic Ising chain with a magnetic impurity at one end to form a closed ring, and studied the magnetic susceptibility of it exactly by using the transfer matrix method. We calculated the magnetic susceptibility in the whole temperature range and gave the phase diagram at ground state of the system about the anisotropy of the impurity and strength of the connection exchange interaction for spin-1 and 3/2 impurities. We also gave the ground state entropy of system and derived the asymptotic expression of the magnetic susceptibility multiplied by temperature at zero temperature limit and high temperature limit. It is found that degenerate phase may exist in some parameter region at zero temperature for the spin number of system being odd, and the ground state entropy is ln⁡(2) in the nondegenerate phase and is dependent on the number of spin in the degenerate phase. The magnetic susceptibility of the system at low temperature exhibits ferromagnetic behavior, and the Curie constant is related to the spin configuration at ground state. When the ground state is nondegenerate, the Curie constant is equal to the square of the net spin, regardless of the parity of the number of the spin. When the number of spin is odd and the ground state is degenerate, the Curie constant may be related to the total number of spin. In high temperature limit, the magnetic susceptibility multiplied by temperature is related to the spin quantum number of impurity and the number of spin in the ring.


Sign in / Sign up

Export Citation Format

Share Document