18s rdna
Recently Published Documents


TOTAL DOCUMENTS

692
(FIVE YEARS 146)

H-INDEX

58
(FIVE YEARS 5)

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Junjie Hu ◽  
Jun Sun ◽  
Yanmei Guo ◽  
Hongxia Zeng ◽  
Yunzhi Zhang ◽  
...  

Abstract Background Data on the genus Sarcocystis in insectivores are limited. The Asian gray shrew Crocidura attenuata is one of the most common species of the insectivore family Soricidae in South Asia and Southeast Asia. To our knowledge, species of Sarcocystis have never been recorded previously in this host. Methods Tissues were obtained from 42 Asian gray shrews caught in 2017 and 2018 in China. Sarcocysts were observed using light microscopy (LM) and transmission electron microscopy (TEM). To describe the parasite life cycle, muscle tissues of the host infected with sarcocysts were force-fed to two beauty rat snakes Elaphe taeniura. Individual sarcocysts from different Asian gray shrews, and oocysts/sporocysts isolated from the small intestines and feces of the experimental snakes, were selected for DNA extraction, and seven genetic markers, namely, two nuclear loci [18S ribosomal DNA (18S rDNA) and internal transcribed spacer region 1 (ITS1)], three mitochondrial genes [cytochrome oxidase subunit 1 (cox1), cox3 and cytochrome b], and two apicoplast genes (RNA polymerase beta subunit and caseinolytic protease C), were amplified, sequenced and analyzed. Results Sarcocysts were found in 17 of the 42 (40.5%) Asian gray shrews. Under LM, the microscopic sarcocysts showed saw- or tooth-like protrusions measuring 3.3–4.5 μm. Ultrastructurally, the sarcocyst wall contained numerous lancet- or leaf-like villous protrusions, similar to those described for type 9h of the common cyst wall classification. The experimental beauty rat snakes shed oocysts/sporocysts measuring 11.9–16.7 × 9.2–10.6 μm with a prepatent period of 10–11 days. Comparison of the newly obtained sequences with those previously deposited in GenBank revealed that those of 18S rDNA and cox1 were most similar to those of Sarcocystis scandentiborneensis recorded in the tree shrews Tupaia minor and Tupaiatana (i.e., 97.6–98.3% and 100% identity, respectively). Phylogenetic analysis based on 18S rDNA or ITS1 sequences placed this parasite close to Sarcocystis spp. that utilize small animals as intermediate hosts and snakes as the known or presumed definitive host. On the basis of morphological and molecular characteristics and host specificity, the parasite was proposed as a new species, named Sarcocystis attenuati. Conclusions Sarcocysts were recorded in Asian gray shrews, to our knowledge for the first time. Based on morphological and molecular characterization, a new species of parasite is proposed: Sarcocystisattenuati. According to the LM and TEM results, S. attenuati sarcocysts are distinct from those of Sarcocystis spp. in other insectivores and those of S. scandentiborneensis in tree shrews. The 18S rDNA or cox1 sequences of Sarcocystis attenuati shared high similarity with those of Sarcocystisscandentiborneensis, Sarcocystis zuoi, Sarcocystis cf. zuoi in the Malayan field rat, and Sarcocystis sp. in the greater white-toothed shrew. Therefore, we suggest that more research on the relationships of these closely related taxa should be undertaken in the future. Graphical abstract


Harmful Algae ◽  
2022 ◽  
Vol 111 ◽  
pp. 102163
Author(s):  
Hiroshi Funaki ◽  
Chetan Chandrakant Gaonkar ◽  
Takafumi Kataoka ◽  
Tomohiro Nishimura ◽  
Kouki Tanaka ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Jo Tzu Ho ◽  
Che-Chang Liang ◽  
P. Janet Chen

Cockscomb (Celosia argentea) is commonly found in subtropical and temperate zones of Africa, South America and South East Asia, and is a popular ornamental plant in the family Amaranthaceae. Cockscomb has been known to contain antiviral proteins, betalains, and anthocyanin, which can be applied in beneficial ways (2). In September 2020, a cockscomb plant (Celosia argentea var. cristata) showing typical galling root symptoms likely infected by root-knot nematodes (Meloidogyne sp.) was collected from a garden in Taichung, Taiwan, and a quick exam of several individuals using MK7F/R primers (7) indicating they were M. enterolobii. Nematode population was established from a single egg mass and was later used for species identification and pathogenicity tests. Five perineal patterns of mature females from the single female population show round to oval shapes with weak lateral lines. Dorsal arches are moderate to high, almost squared, with the smooth ventral striae. Second-stage juveniles are vermiform and have a slender tail, tapering to rounded tip with distinct hyaline region at the tail terminus. Morphological measurements of 28 J2s revealed body length = 457.2 ± 20.6 (416.1-506.9) μm, body width = 16.0 ± 2.0 (13.4-20.3) μm, stylet length = 14.7 ± 0.5 (13.9-15.9) μm, dorsal gland orifice to the stylet base = 4.0 ± 0.5 (2.0-4.8) μm, and tail length = 56.0 ± 3.8 (47.4-60.3) μm. Female perineal patterns and morphometric data are similar to the original description of Meloidogyne enterolobii (9). DNA purified from approximately 1500 juveniles using GeneMark Tissue & Cell Genomic DNA Purification Kit (GeneMark, Taiwan) was used to amplify 18S rDNA fragment, D2-D3 expansion segments of 28S rDNA, and a COII region on mtDNA with primer sets 1A/MelR, D2A/D3B, and C2F3/1108, respectively (4,5,6). The 18S rDNA sequence (OK076893) of this study shares 99.94% nucleotide identity with those of M. enterolobii isolated from the United States (KP901058) and China (MN832688). D2D3 sequence of haplotype 1 (OK076898) shows 100% identity to those of M. enterolobii from China (MT193450) and Taiwan (KP411230). Sequence of haplotype 2 (OK076899) shows 99.86% identity to those of M. enterolobii from the United States (MN809527) and China (MN269945). Sequence of the COII region (OK086042) show 99.86% identity to that of M. enterolobii from China (MN269945). Phylogenetic trees of the three gene sequences were plotted following Ye et al.(10), revealing that the newly described root-knot nematode on Cockscomb is grouped with other M. enterolobii isolates. DNA fragment amplified by primer sets Me-F/R(3) and MK7F/R specifically targeting of M. enterolobii yielded 236 bp and 520 bp, respectively. Pathogenicity tests were assayed, from July to September 2021, on three-week-old nematode-free cockscomb plant directly germinated from seeds of SkyStar® (ASUSA SPIKE SEEDS, Taipei, Taiwan) planted in a 10.5 cm diameter pot filled with 600 ml sterilized peat moss: sand (1:1, v/v) soil in a 28℃walk-in chamber. Nematode eggs were extracted using 0.05% NaoCl as described by Vrain(8), and cockscomb plants (n=3) were inoculated by adding 6000 eggs (10 eggs/ cm3). Cockscomb plants treated with water were used as mock controls. Rf value of the inoculated plants were determined by the method of Belair and Benoit (1) 45 days after inoculation, and the average was 4.13. No galls were observed on the roots of control plants. The results confirmed that cockscomb is the new host of M. enterolobii. To the best of our knowledge, this is the first report of M. enterolobii on Celosia argentea var. cristata in Taiwan.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elżbieta Warchałowska-Śliwa ◽  
Beata Grzywacz ◽  
Maciej Kociński ◽  
Anna Maryańska-Nadachowska ◽  
Klaus-Gerhard Heller ◽  
...  

AbstractEast Africa is a hotspot of biodiversity of many orthopteran taxa, including bushcrickets. Gonatoxia Karsch, 1889 species are fully alate Phaneropterinae, which are perfectly adapted to the foliage of forests. We examined five species using combined cytogenetic and molecular data to determine the inter- and intraspecific genetic diversity. The variation in the diploid number of chromosomes in males ranged from 2n = 28 + X0 and 26 + X0 to 2n = 6 + X0. Fluorescence in situ hybridization showed from one to many 18S rDNA loci as well as interstitial sequences, especially in G. helleri. 18S rDNA loci coincided with active NOR and C-banding patterns. The isolation of populations of the species explains differences in the number of chromosomes (G. maculata), chromosomal polymorphism and chromosomal heterozygosity (G. helleri). Our molecular phylogeny based on the COI locus supported the monophyly of the genus Gonatoxia and separateness of the five examined species in accordance with their morphological features and chromosome numbers as well as the species’ distribution.


Zootaxa ◽  
2021 ◽  
Vol 5067 (3) ◽  
pp. 429-438
Author(s):  
SEVİLAY OKKAY ◽  
C. TOLGA GÜRKANLI ◽  
YILMAZ ÇİFTÇİ ◽  
VİOLETTA YURAKHNO ◽  
AHMET ÖZER

Members of the class Myxosporea Bütschli, 1881 have a cosmopolitan distribution in a wide variety of fish species worldwide. In the present study, the black scorpionfish Scorpaena porcus collected from the Sinop coasts of the Black Sea was investigated for myxosporean parasites using both conventional and molecular methods in the period between September 2015 and August 2019. Using morphological and morphometric data, the myxosporean parasite Ceratomyxa scorpaeni Garbouj, Rangel, Castro, Hmissi, Santos, Bahri, 2016 was identified in the gall bladder of host fish. Molecular analysis of the 18S rDNA gene confirmed the identity of this parasite as C. scorpaeni. This is the first report of its occurrence in the Black Sea.  


2021 ◽  
Vol 12 ◽  
Author(s):  
Maria Aparecida Fernandes ◽  
Marcelo de Bello Cioffi ◽  
Luiz Antônio Carlos Bertollo ◽  
Gideão Wagner Werneck Félix da Costa ◽  
Clóvis Coutinho da Motta-Neto ◽  
...  

Fishes of the genus Acanthurus (Acanthuridae) are strongly related to reef environments, in a broad biogeographic context worldwide. Although their biological aspects are well known, cytogenetic information related to this genus remains incipient. In this study, Acanthurus species from populations inhabiting coastal regions of the Southwest Atlantic (SWA), South Atlantic oceanic islands (Fernando de Noronha Archipelago and Trindade Island), Greater Caribbean (GC), and Indo-Pacific Ocean (the center of the origin of the group) were analyzed to investigate their evolutionary differentiation. For this purpose, we employed conventional cytogenetic procedures and fluorescence in situ hybridization of 18S rDNA, 5S rDNA, and H3 and H2B-H2A histone sequences. The Atlantic species (A. coeruleus, A. chirurgus, and A. bahianus) did not show variations among them, despite their vast continental and insular distribution. In contrast, A. coeruleus from SWA and GC diverged from each other in the number of 18S rDNA sites, a condition likely associated with the barrier created by the outflows of the Amazonas/Orinoco rivers. The geminate species A. tractus had a cytogenetic profile similar to that of A. bahianus. However, the chromosomal macrostructures and the distribution of rDNA and hisDNA sequences revealed moderate to higher rates of diversification when Acanthurus species from recently colonized areas (Atlantic Ocean) were compared to A. triostegus, a representative species from the Indian Ocean. Our cytogenetic data covered all Acanthurus species from the Western Atlantic, tracked phylogenetic diversification throughout the dispersive process of the genus, and highlighted the probable diversifying role of ocean barriers in this process.


DNA ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 77-84
Author(s):  
Sandra Eloisa Bülau ◽  
Rafael Kretschmer ◽  
Ivanete de Oliveira Furo ◽  
Edivaldo Herculano Correa de Oliveira ◽  
Thales Renato Ochotorena de Freitas

Karyotypic analyses have several applications in studies of chromosome organization, evolution, and cytotaxonomy. They are also essential to genome assembly projects. Here, we present for the first time the karyotype description of the endangered species yellow cardinal, Gubernatrix cristata (Passeriformes, Thraupidae), using conventional staining with Giemsa and 18S rDNA probes. This species has 78 chromosomes, with 12 pairs of macrochromosomes and 27 microchromosome pairs. The 18S rDNA clusters were found in four microchromosomes. Our results revealed that G. cristata has a typical avian karyotype (approximately 80 chromosomes). However, G. cristata has an apomorphic state in relation to the 18S rDNA distribution since the ancestral condition corresponds to only two microchromosomes with these sequences. Probably, duplications and translocations were responsible for increasing the number of 18S rDNA clusters in G. cristata. The results were compared and discussed with respect to other Thraupidae and Passeriformes members. Considering the globally threatened status of G. cristata, we believe that its karyotype description could be a starting point for future cytogenetics and sequencing projects.


Author(s):  
Abdel-Azeem S. Abdel-Baki ◽  
Heba M. Abdel-Haleem ◽  
Heba Abdel-Tawab ◽  
Saleh Al-Quraishy ◽  
Lamjed Mansour

Sign in / Sign up

Export Citation Format

Share Document