pluriharmonic function
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
M. Berraho

In this paper, we first try to solve the following problem: If a pluriharmonic function $f$ is definable in an arbitrary o-minimal expansion of the structure of the real field $\overline{\mathbb{R}}:=(\mathbb{R},+,-,.,0,1,<)$, does this function be locally the real part of a holomorphic function which is definable in the same expansion? In Proposition 2.1 below, we prove that this problem has a positive answer if the Weierstrass division theorem holds true for the system of the rings of real analytic definable germs at the origin of $\mathbb{R}^n$. We obtain the same answer for an o-minimal expansion of the real field which is pfaffian closed (Proposition 2.6) for the harmonic functions. In the last section, we are going to show that the Weierstrass division theorem does not hold true for the rings of germs of real analytic functions at $0\in\mathbb{R}^n$ which are definable in the o-minimal structure $(\overline{\mathbb{R}}, x^{\alpha_1},\ldots,x^{\alpha_p})$, here $\alpha_1,\ldots,\alpha_p$ are irrational real numbers.


2017 ◽  
Vol 28 (08) ◽  
pp. 1750063 ◽  
Author(s):  
Samuele Mongodi ◽  
Zbigniew Slodkowski ◽  
Giuseppe Tomassini

In a previous work, we classified weakly complete surfaces which admit a real analytic plurisubharmonic exhaustion function; we showed that, if they are not proper over a Stein space, then they admit a pluriharmonic function, with compact Levi-flat level sets foliated with dense complex leaves. We called these Grauert type surfaces. In this note, we investigate some properties of these surfaces. Namely, we prove that the only compact curves that can be contained in them are negative in the sense of Grauert and that the level sets of the pluriharmonic function are connected, thus completing the analogy with the Cartan–Remmert reduction of a holomorphically convex space. Moreover, in our classification theorem, we had to pass to a double cover to produce the pluriharmonic function; the last part of the present paper is devoted to the construction of an example where passing to a double cover cannot be avoided.


Sign in / Sign up

Export Citation Format

Share Document