disk system
Recently Published Documents


TOTAL DOCUMENTS

531
(FIVE YEARS 52)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liang Zhang ◽  
Qidi Wang ◽  
Xin Li

The prediction of vibration characteristics was studied in the mistuned bladed disk by the mobile interface prestressed component mode synthesis (CMS) superelement method. When the strongly, generally, and weakly coupling in the mistuned bladed disk, according to the results of the direct FEM method, the prediction accuracy of this method was verified and compared with the fixed-interface CMS method by using the relative error of dynamic frequency, vibration mode matching function, and dimensionless root mean square error of vibration amplitudes. It is pointed that for mistuned bladed disk in the strong coupling, the prediction accuracy of dynamic frequency and vibration amplitudes are higher by the mobile interface CMS method and the vibration modes are matched with the direct method. In weak coupling, the results of dynamic frequency and vibration modes predicted by the mobile interface CMS method and the fixed-interface CMS method are consistent with the direct method, but the vibration amplitudes’ prediction error of the mobile interface CMS method is lower than that of the fixed-interface CMS method. In general coupling, the mobile interface CMS method has higher dynamic frequency prediction accuracy at low order, and the two methods have comparable dynamic frequency prediction accuracy at high order. The vibration modes predicted by the two methods are matched with the direct FEM method, and the prediction accuracy of vibration amplitude by the mobile interface CMS method is better than that of the fixed-interface CMS method. The results indicate that the mobile interface CMS method could more accurately predict vibration characteristics of the mistuned bladed disk with different coupling degrees and could be an effective measurement for studying the vibration characteristics of the mistuned bladed disk system.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 80
Author(s):  
Asif Khan ◽  
Jun-Sik Kim ◽  
Heung Soo Kim

A simulation model can provide insight into the characteristic behaviors of different health states of an actual system; however, such a simulation cannot account for all complexities in the system. This work proposes a transfer learning strategy that employs simple computer simulations for fault diagnosis in an actual system. A simple shaft-disk system was used to generate a substantial set of source data for three health states of a rotor system, and that data was used to train, validate, and test a customized deep neural network. The deep learning model, pretrained on simulation data, was used as a domain and class invariant generalized feature extractor, and the extracted features were processed with traditional machine learning algorithms. The experimental data sets of an RK4 rotor kit and a machinery fault simulator (MFS) were employed to assess the effectiveness of the proposed approach. The proposed method was also validated by comparing its performance with the pre-existing deep learning models of GoogleNet, VGG16, ResNet18, AlexNet, and SqueezeNet in terms of feature extraction, generalizability, computational cost, and size and parameters of the networks.


Author(s):  
C. Codella ◽  
C. Ceccarelli ◽  
C. Chandler ◽  
N. Sakai ◽  
S. Yamamoto ◽  
...  

The huge variety of planetary systems discovered in recent decades likely depends on the early history of their formation. In this contribution, we introduce the FAUST Large Program which focuses specifically on the early history of solar-like protostars and their chemical diversity at scales of ∼ 50 au, where planets are expected to form. In particular, the goal of the project is to reveal and quantify the variety of chemical composition of the envelope/disk system at scales of 50 au in a sample of Class 0 and I protostars representative of the chemical diversity observed at larger scales. For each source, we propose a set of molecules able to (1) disentangle the components of the 50–2000 au envelope/disk system, (2) characterize the organic complexity in each of them, (3) probe their ionization structure, and (4) measure their molecular deuteration. The output will be a homogeneous database of thousands of images from different lines and species, i.e., an unprecedented source survey of the chemical diversity of solar-like protostars. FAUST will provide the community with a legacy dataset that will be a milestone for astrochemistry and star formation studies.


2021 ◽  
Vol 923 (1) ◽  
pp. 128
Author(s):  
Karina Maucó ◽  
Carlos Carrasco-González ◽  
Matthias R. Schreiber ◽  
Anibal Sierra ◽  
Johan Olofsson ◽  
...  

Abstract One of the most important questions in the field of planet formation is how millimeter- and centimeter-sized dust particles overcome radial drift and fragmentation barriers to form kilometer-sized planetesimals. ALMA observations of protoplanetary disks, in particular transition disks or disks with clear signs of substructures, can provide new constraints on theories of grain growth and planetesimal formation, and therefore represent one possibility for progress on this issue. We here present ALMA band 4 (2.1 mm) observations of the transition disk system Sz 91, and combine them with previously obtained band 6 (1.3 mm) and band 7 (0.9 mm) observations. Sz 91, with its well-defined millimeter ring, more extended gas disk, and evidence of smaller dust particles close to the star, constitutes a clear case of dust filtering and the accumulation of millimeter-sized particles in a gas pressure bump. We compute the spectral index (nearly constant at ∼3.34), optical depth (marginally optically thick), and maximum grain size (∼0.61 mm) in the dust ring from the multi-wavelength ALMA observations, and compare the results with recently published simulations of grain growth in disk substructures. Our observational results are in strong agreement with the predictions of models for grain growth in dust rings that include fragmentation and planetesimal formation through streaming instability.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012084
Author(s):  
S A Kislitsyn ◽  
V S Berdnikov

Abstract The crystallization process on a cooled disk located on the free surface of a water layer is studied numerically. The influence of thermal gravitational-capillary and mixed convection on the shape of the crystallization front is investigated. In mixed convection modes, the speed of uniform rotation of the disk is set. The calculations were carried out in an axisymmetric formulation of the problem by the finite element method using an adaptive triangular grid and taking into account the latent heat of crystallization and the inverse dependence of density on temperature.


2021 ◽  
Vol 162 (6) ◽  
pp. 279
Author(s):  
Steven M. Silverberg ◽  
Hans Moritz Günther ◽  
Jinyoung Serena Kim ◽  
David A. Principe ◽  
Scott J. Wolk

Abstract Empirically, the estimated lifetime of a typical protoplanetary disk is <5–10 Myr. However, the disk lifetimes required to produce a variety of observed exoplanetary systems may exceed this timescale. Some hypothesize that this inconsistency is due to estimating disk fractions at the cores of clusters, where radiation fields external to a star–disk system can photoevaporate the disk. To test this, we have observed a field on the western outskirts of the IC 1396 star-forming region with XMM-Newton to identify new Class III YSO cluster members. Our X-ray sample is complete for YSOs down to 1.8 M ⊙. We use a subset of these X-ray sources that have near- and mid-infrared counterparts to determine the disk fraction for this field. We find that the fraction of X-ray-detected cluster members that host disks in the field we observe is 17 − 7 + 10 % (1σ), comparable with the 29 − 3 + 4 % found in an adjacent field centered on the cometary globule IC 1396A. We reevaluate YSO identifications in the IC 1396A field using Gaia parallaxes compared to previous color-cut-only identifications, finding that incorporating independent distance measurements provides key additional constraints. Given the existence of at least one massive star producing an external radiation field in the cluster core, the lack of a statistically significant difference in disk fraction in each observed field suggests that disk lifetimes remain consistent as a function of distance from the cluster core.


2021 ◽  
Vol 65 (10) ◽  
pp. 1062-1067
Author(s):  
Z. Y. Tang ◽  
Y. F. Yuan
Keyword(s):  
X Ray ◽  

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
A. Trokhymchuk ◽  
V. M. Pergamenshchik ◽  
A. Huerta ◽  
T. Bryk

Sign in / Sign up

Export Citation Format

Share Document