old crow flats
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 16 (12) ◽  
pp. 124024
Author(s):  
Lauren A MacDonald ◽  
Kevin W Turner ◽  
Ian McDonald ◽  
Mitchell L Kay ◽  
Roland I Hall ◽  
...  

Abstract Lake-rich northern permafrost landscapes are sensitive to changing climate conditions, but ability to track real-time and potentially multiple hydrological responses (e.g. lake expansion, drawdown, drainage) is challenging due to absence of long-term, sustainable monitoring programs in these remote locations. Old Crow Flats (OCF), Yukon, is a Ramsar Wetland of International Importance where concerns about low water levels and their consequences for wildlife habitat and traditional ways of life prompted multidisciplinary studies during the International Polar Year (2007–2008) and led to the establishment of an aquatic ecosystem monitoring program. Here, we report water isotope data from 14 representative thermokarst lakes in OCF, the foundation of the monitoring program, and time-series of derived metrics including the isotope composition of input waters and evaporation-to-inflow ratios for a 13 year period (2007–2019). Although the lakes spanned multiple hydrological categories (i.e. rainfall-, snowmelt- and evaporation-dominated) based on initial surveys, well-defined trends from application of generalized additive models and meteorological records reveal that lakes have become increasingly influenced by rainfall, and potentially waters from thawing permafrost. These sources of input have led to more positive lake water balances. Given the documented role of rainfall in causing thermokarst lake drainage events in OCF and elsewhere, we anticipate increased vulnerability of lateral water export from OCF. This study demonstrates the value of long-term isotope-based monitoring programs for identifying hydrological consequences of climate change in lake-rich permafrost landscapes.


2021 ◽  
pp. 1-3
Author(s):  
Jana M.E. Tondu ◽  
Kevin W. Turner ◽  
Johan A. Wiklund ◽  
Brent B. Wolfe ◽  
Roland I. Hall ◽  
...  

2020 ◽  
Vol 31 (4) ◽  
pp. 497-508
Author(s):  
Sasiri Bandara ◽  
Duane Froese ◽  
Trevor J. Porter ◽  
Fabrice Calmels

2020 ◽  
Vol 4 (8) ◽  
pp. 1281-1290
Author(s):  
Kristin M. Eccles ◽  
Hamnah Majeed ◽  
Trevor J. Porter ◽  
Igor Lehnherr
Keyword(s):  

2017 ◽  
Vol 3 (2) ◽  
pp. 277-300 ◽  
Author(s):  
A.M. Balasubramaniam ◽  
A.S. Medeiros ◽  
K.W. Turner ◽  
R.I. Hall ◽  
B.B. Wolfe

Biotic communities in shallow northern lakes are frequently used to assess environmental change; however, complex interactions among multiple factors remain understudied. Here, we present analyses of a comprehensive data set that evaluates the influence input waters, catchment characteristics, limnology, and sediment properties on diatom and chironomid assemblages in surface sediments of ~49 shallow mainly thermokarst lakes in Old Crow Flats, Yukon. Multivariate analyses and ANOSIM tests identified that composition of diatom (119 taxa) and chironomid (68 taxa) assemblages differs significantly (p < 0.05) between lakes with snowmelt- versus rainfall-dominated input water. Redundancy analyses revealed strong correlation of limnological, sediment, and catchment variables with input waters. Variation partitioning analyses showed that unique effects of limnological variables account for the largest proportion of variation in diatom and chironomid assemblages (17.2% and 12.6%, respectively). Important independent roles of sediment properties (8.5% and 9.5%) and catchment characteristics (4.9% and 5.1%) were also identified. We suggest that the substantial variation shared among these classes (6.1% and 7.9%) is largely attributable to hydrological processes. Our study demonstrates the utility of multi-factor analysis in northern aquatic research and draws attention to the limitations of one-dimensional comparisons and their interpretations when modelling biotic responses to environmental change.


2017 ◽  
Vol 3 (2) ◽  
pp. 220-236 ◽  
Author(s):  
Jana M.E. Tondu ◽  
Kevin W. Turner ◽  
Johan A. Wiklund ◽  
Brent B. Wolfe ◽  
Roland I. Hall ◽  
...  

Evidence from remote sensing studies suggests that the frequency of thermokarst lake drainage events is increasing in response to climate change, but the consequences of these changes on the limnology of remaining waterbodies remain unknown. Here, we utilize a multiparameter paleolimnological record and post-drainage water isotope and chemistry monitoring to characterize the limnological evolution of Zelma Lake in Old Crow Flats, Yukon. During the early part of the record (~1678 to 1900 CE), analysis of geochemical variables and algal pigments indicate relatively stable limnological conditions. Abruptly beginning at ~1900, Zelma Lake experienced a 40 year phase of reduced production, likely resulting from thermokarst shoreline expansion and associated increases in turbidity and low light availability. This was followed by ~70 years of increasing production, likely from the stabilization of shorelines combined with a warming climate. Zelma Lake catastrophically drained in June 2007. Post-drainage conditions were characterized by intense eutrophication marked by increases in nutrient and major ion concentrations and the unprecedented occurrence of okenone and diatoxanthin pigments. Comparison to the post-drainage paleolimnological record from another thermokarst lake in Old Crow Flats indicates that a sharp increase of production is likely a common outcome of thermokarst lake drainage, yet intensity differs owing to site-specific catchment characteristics.


Sign in / Sign up

Export Citation Format

Share Document