algebraic polynomial
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Mohammed El Amine MONIR

Abstract The real problematic with algebraic polynomial equations is how to exactly solve any sixth and fifth degree polynomial equations. In this study, we give a new absolute method that presents a new decomposition to exactly solve a sixth degree polynomial equation, while the corresponding fifth degree equation can be easily transformed into a sixth degree equation of this kind (sixth degree equation solvable by this method), then the sextic equation (sixth degree equation) obtained will be solved by applying the principles of this method; moreover, the solutions of the quintic equation (fifth degree equation) will be easily deduced.


Vestnik IGEU ◽  
2021 ◽  
pp. 54-61
Author(s):  
A.R. Gaiduk ◽  
S.G. Kapustyan ◽  
M.J. Almashaal

The issue of designing nonlinear control systems is a complex problem. A lot of methods are known that allow us to find a suitable control for a given nonlinear object that provides asymptotic stability of the nonlinear system equilibrium and an acceptable quality of the transient process. Many of these methods are difficult to apply in practice. Thus, comparing some of the methods in terms of simplicity of use is of great interest. Two analytical methods for the synthesis of nonlinear control systems are considered. They are the algebraic polynomial-matrix method that uses a quasilinear model, and the feedback linearization method that uses the Brunovsky model in combination with special feedbacks. A comparative analysis of the algebraic polynomial-matrix method and the feedback linearization method is carried out. It is found out that the algebraic polynomial-matrix method (APM) is much simpler than the feedback linearization method (FLM). A numerical example of designing a system that is synthesized by these methods is considered. It is found out that the system synthesized by the APM method has a region of attraction of the equilibrium position twice as large as the region of attraction of the system synthesized by the FLM method. It is reasonable to use the algebraic polynomial-matrix method with the quasilinear models in case of synthesis of control systems of objects with differentiable nonlinearities.


2021 ◽  
Vol 56 (2) ◽  
pp. 208-211
Author(s):  
A. V. Savchuk

We give a sufficient condition on coefficients $a_k$ of an algebraic polynomial $P(z)=\sum\limits_{k=0}^{n}a_kz^k$, $a_n\not=0,$ such that the pointwise Bernstein inequality $|P'(z)|\le n|P(z)|$ is true for all $z,\ |z|\le 1$.


Author(s):  
Abdul Rauf ◽  
Muhammad Ishtiaq ◽  
Mehwish Hussain Muhammad ◽  
Muhammad Kamran Siddiqui ◽  
Qammar Rubbab

Author(s):  
Frank Vega

Given a polynomial $P(x_{1}, x_{2}, \ldots, x_{n})$ which is the sum of terms, where each term is a product of two distinct variables, then the problem $APSS$ consists in calculating the total sum value of $\sum_{\forall U_{i}} P(u_{1}, u_{2}, \ldots, u_{n})$, for all the possible assignments $U_{i} = \{u_{1}, u_{2}, ... u_{n}\}$ to the variables such that $u_{j} \in \{0, 1\}$. $APSS$ is the abbreviation for the problem name Algebraic Polynomial Sum Solver Over $\{0, 1\}$. We show that $APSS$ is in $\#L$ and therefore, it is in $FP$ as well. The functional polynomial time solution was implemented with Scala in \url{https://github.com/frankvegadelgado/sat} using the DIMACS format for the formulas in $\textit{MONOTONE-2SAT}$.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 167
Author(s):  
Ke-Pao Lin ◽  
Yi-Fan Wang ◽  
Ruo-Yu Wang ◽  
Andrew Yang

We face the problem to determine whether an algebraic polynomial is nonnegative in an interval the Yau Number Theoretic Conjecture and Yau Geometric Conjecture is proved. In this paper, we propose a new theorem to determine if an algebraic polynomial is nonnegative in an interval. It improves Wang-Yau Lemma for wider applications in light of Sturm’s Theorem. Many polynomials can use the new theorem but cannot use Sturm’s Theorem and Wang-Yau Lemma to judge whether they are nonnegative in an interval. New Theorem also performs better than Sturm’s Theorem when the number of terms and degree of polynomials increase. Main Theorem can be used for polynomials whose coefficients are parameters and to any interval we use. It helps us to find the roots of complicated polynomials. The problem of constructing nonnegative trigonometric polynomials in an interval is a classical, important problem and crucial to many research areas. We can convert a given trigonometric polynomial to an algebraic polynomial. Hence, our proposed new theorem affords a new way to solve this classical, important problem.


2021 ◽  
Vol 19 (1) ◽  
pp. 1047-1055
Author(s):  
Zhihua Zhang

Abstract Fourier approximation plays a key role in qualitative theory of deterministic and random differential equations. In this paper, we will develop a new approximation tool. For an m m -order differentiable function f f on [ 0 , 1 0,1 ], we will construct an m m -degree algebraic polynomial P m {P}_{m} depending on values of f f and its derivatives at ends of [ 0 , 1 0,1 ] such that the Fourier coefficients of R m = f − P m {R}_{m}=f-{P}_{m} decay fast. Since the partial sum of Fourier series R m {R}_{m} is a trigonometric polynomial, we can reconstruct the function f f well by the combination of a polynomial and a trigonometric polynomial. Moreover, we will extend these results to the case of random processes.


2020 ◽  
Vol 6 (2) ◽  
pp. 87
Author(s):  
Tatiana M. Nikiforova

The paper presents new solutions to two classical problems of approximation theory. The first problem is to find the polynomial that deviates least from zero on an ellipse. The second one is to find the exact upper bound of the uniform norm on an ellipse with foci \(\pm 1\) of the derivative of an algebraic polynomial with real coefficients normalized on the segment \([- 1,1]\).


Sign in / Sign up

Export Citation Format

Share Document