high throughput virtual screening
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 59)

H-INDEX

21
(FIVE YEARS 5)

Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 59
Author(s):  
Muthu Kumar Thirunavukkarasu ◽  
Utid Suriya ◽  
Thanyada Rungrotmongkol ◽  
Ramanathan Karuppasamy

The RAS–RAF–MEK–ERK pathway plays a key role in malevolent cell progression in many tumors. The high structural complexity in the upstream kinases limits the treatment progress. Thus, MEK inhibition is a promising strategy since it is easy to inhibit and is a gatekeeper for the many malignant effects of its downstream effector. Even though MEK inhibitors are under investigation in many cancers, drug resistance continues to be the principal limiting factor to achieving cures in patients with cancer. Hence, we accomplished a high-throughput virtual screening to overcome this bottleneck by the discovery of dual-targeting therapy in cancer treatment. Here, a total of 11,808 DrugBank molecules were assessed through high-throughput virtual screening for their activity against MEK. Further, the Glide docking, MLSF and prime-MM/GBSA methods were implemented to extract the potential lead compounds from the database. Two compounds, DB012661 and DB07642, were outperformed in all the screening analyses. Further, the study results reveal that the lead compounds also have a significant binding capability with the co-target PIM1. Finally, the SIE-based free energy calculation reveals that the binding of compounds was majorly affected by the van der Waals interactions with MEK receptor. Overall, the in silico binding efficacy of these lead compounds against both MEK and PIM1 could be of significant therapeutic interest to overcome drug resistance in the near future.


2021 ◽  
Author(s):  
Dylan Brunt ◽  
Phillip Lakernick ◽  
CHUN WU

Abstract RNA-dependent RNA polymerase (RdRp), is an enzyme essential component in the RNA replication within the life cycle of the severely acute respiratory coronavirus-2 (SARS-CoV-2), causing the deadly respiratory induced sickness COVID-19. Remdesivir is a prodrug that has seen some success in inhibiting this enzyme, however there is still the pressing need for effective alternatives. In this study, we present the discovery of four non-nucleoside small molecules that bind favorably to RdRp over adenosine-triphosphate (ATP) and active-form remdesivir-triphosphate (RTP) using high-throughput virtual screening (HTVS) coupled with extensive (total 4800 ns) molecular dynamics (MD) simulations with using the ZINC compounds database against SARS-CoV-2 RdRp (PDB: 7BV2). We found that the simulations with both ATP and RTP remained stable for the duration of their trajectories, and it was revealed that the phosphate tail of RTP was stabilized by a positive amino acid pocket near the entry channel of RTP and magnesium ions containing residues K551, R553, R555 and K621. It was also found that residues D623, D760, and N691 further stabilized the ribose portion of RTP with U10 on the template RNA strand forming hydrogen pairs with the adenosine motif. Using these models of RdRp, we employed them to screen the ZINC database of ~17 million molecules. Using docking and drug properties scoring, we narrowed down our selection to fourteen candidates. These were subjected to 200 ns simulations each underwent free energy calculations. We identified four hit compounds from the ZINC database that have similar binding poses to RTP while possessing lower overall binding free energies, with ZINC097971592 having a binding free energy two times lower than RTP.


2021 ◽  
Vol 14 (12) ◽  
pp. 1243
Author(s):  
Raitis Bobrovs ◽  
Iveta Kanepe ◽  
Nauris Narvaiss ◽  
Liene Patetko ◽  
Gints Kalnins ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses mRNA capping to evade the human immune system. The cap formation is performed by the SARS-CoV-2 mRNA cap methyltransferases (MTases) nsp14 and nsp16, which are emerging targets for the development of broad-spectrum antiviral agents. Here, we report results from high-throughput virtual screening against these two enzymes. The docking of seven million commercially available drug-like compounds and S-adenosylmethionine (SAM) co-substrate analogues against both MTases resulted in 80 virtual screening hits (39 against nsp14 and 41 against nsp16), which were purchased and tested using an enzymatic homogeneous time-resolved fluorescent energy transfer (HTRF) assay. Nine compounds showed micromolar inhibition activity (IC50 < 200 μM). The selectivity of the identified inhibitors was evaluated by cross-checking their activity against human glycine N-methyltransferase. The majority of the compounds showed poor selectivity for a specific MTase, no cytotoxic effects, and rather poor cell permeability. Nevertheless, the identified compounds represent good starting points that have the potential to be developed into efficient viral MTase inhibitors.


Author(s):  
Austin Clyde ◽  
Stephanie Galanie ◽  
Daniel W. Kneller ◽  
Heng Ma ◽  
Yadu Babuji ◽  
...  

2021 ◽  
Vol 22 (20) ◽  
pp. 11143
Author(s):  
Marko Jukič ◽  
Dušanka Janežič ◽  
Urban Bren

SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new pathogen from the family of Coronaviridae that caused a global pandemic of COVID-19 disease. In the absence of effective antiviral drugs, research of novel therapeutic targets such as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) becomes essential. This viral protein is without a human counterpart and thus represents a unique prospective drug target. However, in vitro biological evaluation testing on RdRp remains difficult and is not widely available. Therefore, we prepared a database of commercial small-molecule compounds and performed an in silico high-throughput virtual screening on the active site of the SARS-CoV-2 RdRp using ensemble docking. We identified a novel thioether-amide or guanidine-linker class of potential RdRp inhibitors and calculated favorable binding free energies of representative hits by molecular dynamics simulations coupled with Linear Interaction Energy calculations. This innovative procedure maximized the respective phase-space sampling and yielded non-covalent inhibitors representing small optimizable molecules that are synthetically readily accessible, commercially available as well as suitable for further biological evaluation and mode of action studies.


Sign in / Sign up

Export Citation Format

Share Document