glycerol molecule
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
О.Н. Комарова

Смеси на основе белков козьего молока для вскармливания детей первого года жизни применяются с 1980-х гг. Новое поколение детских смесей производится с использованием цельного козьего молока, в которых поддерживается естественное соотношение сывороточного белка к казеину – 20:80, сохранен молочный жир и углеводный компонент, что позволяет транслировать преимущества козьего молока на состав адаптированной смеси для приближения к составу грудного молока. Белок и молочный жир, полученные из цельного козьего молока, обладают высокой усвояемостью вследствие особенностей строения и состава: белок с низким αs1-казеином образует мягкий сгусток в желудке, что способствует легкому его перевариванию, а жировые глобулы козьего молока имеют меньшие размеры и большую площадь поверхности, сравнимую с грудным молоком. Молочный жир козьего молока в смеси является источником основных донаторов энергии – жирных кислот с короткой и средней длиной углеродной цепи, β-кетокислот, а также пальмитиновой кислоты в sn-2-положении в молекуле глицерола. В составе смеси в процессе производства сохраняются мембраны жировых глобул козьего молока. Их компоненты обладают разнообразными физиологическими функциями. Белки мембран жировых глобул козьего молока способствуют развитию микробиоты кишечника, иммунных функций, обладают антимикробным и противовирусным действием. Липиды мембран жировых глобул козьего молока улучшают барьерные функции кишечного эпителия, поддерживают его структурную целостность, а также участвуют в построении мембран клеток слизистой оболочки желудочно-кишечного тракта и быстроразвивающейся нервной ткани ребенка. В цельном козьем молоке присутствуют олигосахариды в меньшем количестве и разнообразии по сравнению с грудным молоком, что диктует необходимость дополнения детской смеси олигосахаридами или пребиотиками, повторяющими функции олигосахаридов грудного молока. Доказательства безопасности и клинической эффективности применения смесей на основе цельного козьего молока в обеспечении правильного роста и развития детей первых месяцев жизни представлены в клинических исследованиях. Goat milk protein-based formulas for feeding babies of the first year of life have been used since the 80s of the last century. A new generation of infant formula is made using whole goat milk, in which the natural ratio of whey protein: casein is maintained at 20:80, milk fat and carbohydrate components are preserved, which allows translating the benefits of goat milk into an adapted formula to approximate the composition of breast milk (BM). Protein and milk fat obtained from whole goat milk are highly digestible due to the structural and compositional characteristics: protein with low αs1-casein forms a soft clot in the stomach, which facilitates its easy digestion, and the fat globules of goat milk are smaller and larger surface area comparable to BM. Goat milk fat in the formula is the source of the main donor energy – fatty acids with a short and medium carbon chain length, β-keto acids, and palmitic acid in the sn-2-position in the glycerol molecule. In the composition of the formula during the production process, the goat's milk fat globules membranes (MFGM) are preserved. The components of MFGM have different physiological functions. MFGM proteins contribute to the development of intestinal microbiota, immune functions, have antimicrobial and antiviral effects. Lipids MFGM improve the barrier functions of the intestinal epithelium, maintain its structural integrity, and also participate in the construction of cell membranes of the mucous membrane of the gastrointestinal tract and the rapidly developing nervous tissue of the child. In whole goat milk, oligosaccharides (OS) are present in a smaller amount and variety in comparison with BM, which dictates the need to supplement the infant formula with OS or prebiotics that repeat the functions of BM OG. Clinical studies have shown evidence of the safety and clinical efficacy of using whole goat milk formulas in promoting the proper growth and development of infants in their first months of life.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2353
Author(s):  
Oscar Eduardo Rojas Álvarez ◽  
María Inés Nicolás Vázquez ◽  
Jose Oñate-Garzón ◽  
Carlos A. Arango

There is ongoing interest in the alcohol industry to significantly reduce and/or add value to the liquid residue, vinasse, produced after the distillation and rectification of ethanol from sugar cane. Vinasse contains potassium, glycerol, and a protein component that can cause environmental issues if improperly disposed of. Currently, some industries have optimized their processes to reduce waste, and a significant proportion of vinasse is being considered for use as an additive in other industrial processes. In the manufacture of cement and asphalt, vinasse has been used in the mixtures at low concentrations, albeit with some physical and mechanical problems. This work is the first molecular approximation of the components of the sugar cane vinasse in an industrial context, and it provides atomic details of complex molecular events. In the current study, the major components of sugar cane vinasse, alone or complexed on the surface of calcium carbonate, were modeled and simulated using molecular dynamics. The results showed that the protein component, represented by the mannoprotein Mp1p, has a high affinity for forming hydrogen bonds with potassium and glycerol in the vinasse. Additionally, it provides atomic stability to the calcium carbonate surface, preserving the calcite crystalline structure in the same way potassium ions interact with the carbonate group through ion–dipole interactions to improve the cohesion of the modeled surface. On the contrary, when the glycerol molecule interacts with calcium carbonate using more than two hydrogen bonds, it triggers the breakdown of the crystalline structure of calcite expanding the ionic pair.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 728 ◽  
Author(s):  
Gheorghița Mitran ◽  
Florentina Neațu ◽  
Ștefan Neațu ◽  
Mihaela M. Trandafir ◽  
Mihaela Florea

The catalytic activity of a series of vanadium aluminophosphates catalysts prepared by sol-gel method followed by combustion of the obtained gel was evaluated in glycerol conversion towards methanol. The materials were characterized by several techniques such as X-ray diffraction (XRD), UV-vis, Fourier-transform infrared (FTIR), Raman and X-ray photoelectron (XPS) spectroscopies. The amount of vanadium incorporated in aluminophosphates framework played an important role in the catalytic activity, while in the products distribution the key role is played by the vanadium oxidation state on the surface. The sample that contains a large amount of V4+ has the highest selectivity towards methanol. On the sample with the lowest vanadium loading the oxidation path to dihydroxyacetone is predominant. The catalyst with higher content of tetrahedral isolated vanadium species, such V5APO, is less active in breaking the C–C bonds in the glycerol molecule than the one containing polymeric species.


2019 ◽  
Author(s):  
Li Zhang ◽  
Deqiang Yao ◽  
Fu Zhou ◽  
Qing Zhang ◽  
Ying Xia ◽  
...  

AbstractHuman glycerol channel AQP7 conducts glycerol release from adipocyte and entry into the cells in pancreatic islets, muscles and kidney tubule, and thus regulate glycerol metabolism in those tissues. Compared with other human aquaglyceroporins, AQP7 shows a less conserved “NPA” motif in the center cavity, and a pair of aromatic residues at Ar/R selectivity filter. To understand the structural basis for the glycerol conductance, we crystallized the human AQP7 and determined the structure at 3.7 Å. A substrate binding pocket was found near to the Ar/R filter and the bound glycerol molecule stabilized by R229. In vivo functional assay on human AQP7 as well as AQP3 and AQP10 demonstrated strong glycerol transportation activities at physiological condition. The human AQP7 structure reveals a fully closed conformation with its permeation pathway strictly confined by Ar/R filter at the exoplasmic side and the gate at the cytoplasmic side, and the dislocation of the residues at narrowest parts of glycerol pathway in AQP7 play a critical role in controlling the glycerol flux.


2019 ◽  
pp. 124-130
Author(s):  
I. N. Zakharova ◽  
N. G. Sugyan

Making sure that the child is absorbing properly the main nutrients such as proteins, fats, carbohydrates, and vitamins, macro- and micronutrients is a key influencer when it comes to the harmonious growth and development. In infants, triglycerides digestion starts in the stomach, where three lipases – human milk, gastric and lingual lipases – split triglycerides. The participation of breast milk lipase stimulated by bile salts in the duodenum in splitting fats is an important feature of digestion in breastfed babies. The absorption of fatty acids differs depending on the length of the carbon chain and the location of the fatty acid in the glycerol molecule. Short-chain and medium-chain fatty acids, as well as glycerine, choline are hydrophilic compounds, which are absorbed without pancreatic lipase and bile acids, directly into the blood, bypassing the lymphatic system. The specific configuration of human milk triglycerides improves the absorption of fatty acids. In situations where lipids digestion or absorption appears impaired, one may talk of steatorrhea. If young children have type I steatorrhea (the presence of neutral fat in stool), it is first required to exclude absolute exocrine pancreatic insufficiency: cystic fibrosis, Shwachman-Diamond syndrome, Pearson syndrome, isolated lipase deficiency (Sheldon – Ray syndrome), etc. Type II steatorrhea (excretion of fatty acids in stool) is not a specific symptom of certain diseases, but is often observed in the small intestine pathology.


Biotecnia ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 29-36
Author(s):  
María del Carmen Gutiérrez Guerrero ◽  
Flor de María Alvarez Mitre ◽  
Jorge Fernando Toro Vazquez ◽  
Fidel Guevara Lara ◽  
Juan Jáuregui Rincón

Lard is an animal fat containing specific triacylglycerols (TAGs) where the saturated fatty acids are mainly located in the sn-2 position providing it with inadequate attributes for the food industry, such as graininess. By Interesterification, a redistribution of fatty acids within the glycerol molecule takes place modifying fats and oils properties. Interesterification of lard and coconut oil (CO) blends at 70:30 and 80:20 ratios, resulted in IBE70, IBE80 (enzymatic procedure) and IBC70, IBC80 (chemical procedure). They were characterized by their acidity index (AI), iodine index (II) and thermal behavior by differential scanning calorimetry (DSC). II results showed that the highly saturated TAGs in CO affects lard only at the 70:30 ratio. DSC results made evident that the IBE and IBC melting profiles are not significantly different. Additionally, they showed higher crystallization and melting enthalpies compared to native lard, indicating a higher degree of intermolecular arrangement. These findings led to an application as a potential cocoa butter (CB) substitute. A mixture (CBR80) of 20% IBE70 and 80% CB, resulted in a thermal behavior that most resembled CB. Microstructure and texture showed CBR80 as a feasible CB replacer.


2018 ◽  
Vol 40 (2) ◽  
pp. 18-21
Author(s):  
Roop Mallik

Cells in all organisms build fatty acid hydrocarbon chains and hook them up with a glycerol molecule to make energy-rich triglycerides (fat, in simple language). These are then stocked away inside cells in micron-sized bodies called lipid droplets (LDs). When glucose levels diminish, LDs are supplied to mitochondria to burn up the fatty acid chains so that ATP can be made to fuel your cells. But, did you know that the same LDs are also fueling your car? Fossil fuels are basically hydrocarbon chains that were hidden away in the LDs of creatures that died millions of years ago. There is now tremendous interest in generating bio-fuel from algae that can store large quantities of LDs. Perhaps this is why the oil companies have cared more about LDs than biologists in the recent past.


2014 ◽  
Vol 70 (12) ◽  
pp. 3310-3319 ◽  
Author(s):  
Tatyana N. Safonova ◽  
Sergey N. Mikhailov ◽  
Vladimir P. Veiko ◽  
Nadezhda N. Mordkovich ◽  
Valentin A. Manuvera ◽  
...  

Uridine phosphorylase (UP; EC 2.4.2.3), a key enzyme in the pyrimidine-salvage pathway, catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate. Expression of UP fromShewanella oneidensisMR-1 (SoUP) was performed inEscherichia coli. The high-resolution X-ray structure of SoUP was solved in the free form and in complex with uridine. A crystal of SoUP in the free form was grown under microgravity and diffracted to ultrahigh resolution. Both forms of SoUP contained sulfate instead of phosphate in the active site owing to the presence of ammonium sulfate in the crystallization solution. The latter can be considered as a good mimic of phosphate. In the complex, uridine adopts a high-synconformation with a nearly planar ribose ring and is present only in one subunit of the hexamer. A comparison of the structures of SoUP in the free form and in complex with the natural substrate uridine showed that the subunits of the hexamer are not identical, with the active sites having either an open or a closed conformation. In the monomers with the closed conformation, the active sites in which uridine is absent contain a glycerol molecule mimicking the ribose moiety of uridine.


2010 ◽  
Vol 66 (7) ◽  
pp. 797-805 ◽  
Author(s):  
Shu-Fen Coker ◽  
Adrian J. Lloyd ◽  
Edward Mitchell ◽  
Gareth R. Lewis ◽  
Alun R. Coker ◽  
...  

The enzyme succinyl-CoA:3-oxoacid coenzyme A transferase (SCOT) participates in the metabolism of ketone bodies in extrahepatic tissues. It catalyses the transfer of coenzyme A (CoA) from succinyl-CoA to acetoacetate with a classical ping-pong mechanism. There is biochemical evidence that the enzyme undergoes conformational changes during the reaction, but no domain movements have been reported in the available crystal structures. Here, a structure of pig heart SCOT refined at 1.5 Å resolution is presented, showing that one of the four enzyme subunits in the crystallographic asymmetric unit has a molecule of glycerol bound in the active site; the glycerol molecule is hydrogen bonded to the conserved catalytic glutamate residue and is likely to occupy the cosubstrate-binding site. The binding of glycerol is associated with a substantial relative movement (a 13° rotation) of two previously undefined domains that close around the substrate-binding site. The binding orientation of one of the cosubstrates, acetoacetate, is suggested based on the glycerol binding and the possibility that this dynamic domain movement is of functional importance is discussed.


2006 ◽  
Vol 72 (4) ◽  
pp. 2306-2312 ◽  
Author(s):  
Masanobu Nishikawa ◽  
Ken'ichi Ogawa

ABSTRACT Antimicrobial epsilon-poly-l-lysine (ePL) is secreted by Streptomycetaceae bacteria, and the mechanism of ePL biosynthesis remains to be elucidated. We previously reported that an unknown ePL derivative accumulates in the culture medium of ePL-producing bacteria when glycerol is added to the culture medium (Nishikawa and Ogawa, Appl. Environ. Microbiol. 68:3575-3581, 2002). In this study, by using matrix-assisted laser desorption ionization—time of flight mass spectrometry and nuclear magnetic resonance, we identified the unknown derivative as the ester formed between the hydroxyl group of a glycerol molecule and the terminal carboxyl group of an ePL molecule. When a short-chain aliphatic polyol, such as ethylene glycol, propanediol, or butanediol, was added instead of glycerol, a corresponding ePL-polyol monoester accumulated in the culture medium of ePL-producing bacteria. ePL esterification was accompanied by ePL synthesis in intact cells and a cell-free system, but no esterification of exogenous ePL was observed. ePL-polyol esters were formed during lysine polymerization. The number of lysine residues of ePL-polyol esters decreased with increasing polyol concentration. Taken together, these results indicate that ePL synthesis is inhibited by polyols via esterification and that ePL elongation occurs via the incorporation of lysine monomers into the carboxyl terminus of ePL.


Sign in / Sign up

Export Citation Format

Share Document