Many different networks that rely on short-distance wireless technology for their functions utilize the IEEE 802.15.4 Standard, especially in the case of systems that experience a low level of traffic. The networks using this standard are typically based on the Low-Rate Wireless Personal Area Network, herein called the LR-WPAN; this network is used for the provision of both the physical layer, herein referred to as the PHY, and the media access control, herein abbreviated as the MAC. There are four security features in the IEEE 802.15.4 Standard that are designed to ensure the safe and secure transmission of data through the network. Disconnection from the network is managed and controlled by the message authentication code, herein referred to as the MAC, while the coordinator personal area network, herein abbreviated as the PAN, is also able to trigger the disconnection. However, the process of disconnection from the network is one area of vulnerability to denial-of-service attacks, herein referred to as DoS; this highlights a major shortcoming of the IEEE 802.15.4 Standard’s security features. This paper is intended to contribute to the improvement of security for the IEEE network by conducting a specific and in-depth review of available literature as well as conducting an analysis of the disassociation process. In doing so, potential new threats will be highlighted, and this data can be used to improve the security of the IEEE 802.15.4 Standard. Overall, in this paper, the role of the Castalia tool in the OMNET++ environment is analysed and interpreted for these potential new threats. Also, this paper proposes a solution to such threats to improve the security IEEE 802.15.4 disassociation process. Keywords: Disassociation vulnerability of IEEE 802.15.4 Standard, DoS attack, IoT security.