azimuthal mode
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 29)

H-INDEX

21
(FIVE YEARS 4)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 132
Author(s):  
Alok Kumar Pandey ◽  
Tanguy Larrieu ◽  
Guillaume Dovillaire ◽  
Sophie Kazamias ◽  
Olivier Guilbaud

Light beams carrying Orbital Angular Momentum (OAM), also known as optical vortices (OV), have led to fascinating new developments in fields ranging from quantum communication to novel light–matter interaction aspects. Even though several techniques have emerged to synthesize these structured-beams, their detection, in particular, single-shot amplitude, wavefront, and modal content characterization, remains a challenging task. Here, we report the single-shot amplitude, wavefront, and modal content characterization of ultrashort OV using a Shack-Hartmann wavefront sensor. These vortex beams are obtained using spiral phase plates (SPPs) that are frequently used for high-intensity applications. The reconstructed wavefronts display a helical structure compatible with the topological charge induced by the SPPs. We affirm the accuracy of the optical field reconstruction by the wavefront sensor through an excellent agreement between the numerically backpropagated and experimentally obtained intensity distribution at the waist. Consequently, through Laguerre–Gauss (LG) decomposition of the reconstructed fields, we reveal the radial and azimuthal mode composition of vortex beams under different conditions. The potential of our method is further illustrated by characterizing asymmetric Gaussian vortices carrying fractional average OAM, and a realtime topological charge measurement at a 10Hz repetition rate. These results can promote Shack-Hartmann wavefront sensing as a single-shot OV characterization tool.


Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 296
Author(s):  
Giorgio Palma ◽  
Lorenzo Burghignoli ◽  
Francesco Centracchio ◽  
Umberto Iemma

Modern turbofans with high bypass ratios, low blade passage frequencies and short nacelles require continuous development of acoustic linings to achieve the noise reductions expected by the international aviation authorities. Metamaterials and metafluids have been recently proposed as promising technologies for designing innovative acoustic treatments dedicated to reducing aeronautic turbofan noise emissions. In this work, a phase-gradient metasurface treatment is investigated as a way to tackle the noise radiation from an axially symmetric nacelle. This paper aims to study the potential benefits of the mentioned technology, and is not an attempt to design a complete new liner or nacelle. The metasurface is modelled through an equivalent metafluid, and a simulation-based optimisation is used in defining the design parameters. The tonal contribution of the blade passage frequency is considered, and the numerical results with the metafluid optimised on one azimuthal mode at a time show a significant effect in terms of acoustic levels and directivity over an arc of virtual receivers.


2021 ◽  
Author(s):  
Hao Hu ◽  
Jiwei Qi ◽  
Qiang Wu ◽  
Xianhui Fu ◽  
Hongjin Wu ◽  
...  

Abstract We designed a simple on-chip integrated optical isolator made up of a MIM waveguide and a disc cavity filled with magneto-optical material to enhance the transverse magneto-optical effect through the coin paradox spin-orbit interaction (SOI). The simulation results of the non-reciprocal transmission properties of this optical structure show that a high-performance on-chip integrated optical isolator is obtained. The maximum isolation ratio (IR) is greater than 40 dB with a corresponding insertion loss (IL) of about 2 dB. The great performance of the optical isolator is attributed to the strong transverse magneto-optical effect, which is enhanced by the coin paradox SOI. Moreover, the enhancement of the transverse magneto-optical effect through the coin paradox SOI is more substantial for smaller azimuthal mode number n. Benefitting from this, the transverse magneto-optical effect remains strong in a wide wavelength range. Additionally, a smaller cavity has a stronger transverse magneto-optical effect in the same wavelength range. Our research provides a new perspective for creating highly integrated magneto-optical devices.


2021 ◽  
Vol 87 (5) ◽  
Author(s):  
J.-M. Rax ◽  
R. Gueroult

Rotational Fresnel drag – or orbital Faraday rotation – in a rotating magnetised plasma is uncovered and studied analytically for Trivelpiece–Gould and whistler–helicon waves carrying orbital angular momentum (OAM). Plasma rotation is shown to introduce a non-zero phase shift between OAM-carrying eigenmodes with opposite helicities, similarly to the phase shift between spin angular momentum eigenmodes associated with the classical Faraday effect in a magnetised plasma at rest. By examining the dispersion relation for these two low-frequency modes in a Brillouin rotating plasma, this Faraday–Fresnel rotation effect is traced back to the combined effects of Doppler shift, centrifugal forces and Coriolis forces. In addition, the longitudinal group velocity in the presence of rotation is shown to depend both on rotation and azimuthal mode, therefore predicting the Faraday–Fresnel splitting of the envelope of a wave packet containing a superposition of OAM-carrying eigenmodes with opposite helicities.


2021 ◽  
pp. 1475472X2110433
Author(s):  
Vianney Masson ◽  
Stéphane Moreau ◽  
Hélène Posson ◽  
Thomas Node-Langlois

Sound transmission through a finite-lined section in a rigid annular duct with swirling and sheared mean flow is analyzed with a new mode-matching method based on the conservation of the total enthalpy and the mass flow, which does not reduce to the conservation of the pressure and the axial velocity when the swirl is non-zero. It relies on a new projection method based on the property of the Chebyshev polynomials and on the scattering matrix formalism to yield transmission losses. This new method is first validated against a finite elements method tool in the uniform axial flow case, and then provides a parametric study of the effect of swirl. At low azimuthal mode order [Formula: see text], the swirl amplifies the attenuation of the contra-rotating modes and makes the attenuation of the co-rotating modes decrease with a trend of a general shift of the transmission loss curve toward contra-rotating modes. A small rotation of the transmission loss curves at low [Formula: see text] is also generally observed. The boundary condition in the lined section has a small effect on the transmission loss, except close to the cut-on thresholds. Finally, the duct boundary-layer thickness has a significant effect on the cut-on modes and the transmission loss but not its profile.


2021 ◽  
Vol 926 ◽  
Author(s):  
Christian Thomas ◽  
Christopher Davies

An adjoint approach is developed to compute the receptivity of the rotating disc boundary layer to surface roughness. The adjoint linearised Navier–Stokes equations, in cylindrical coordinates, are derived and receptivity characteristics are computed for a broad range of azimuthal mode numbers using a fully equivalent velocity–vorticity formulation. For each set of flow conditions (i.e. azimuthal mode number), the adjoint method only requires that the linear and adjoint solutions be computed once. Thus, the adjoint approach offers significant computational and time advantages over alternative receptivity schemes (i.e. direct linearised Navier–Stokes) as they can be used to instantaneously compute the receptivity of boundary layer disturbances to many environmental mechanisms. Stationary cross-flow disturbances are established by randomly distributed surface roughness that is periodic in the azimuthal direction and modelled via a linearisation of the no-slip condition on the disc surface. Each roughness distribution is scaled on its respective root-mean-square. A Monte-Carlo type uncertainty quantification analysis is performed, whereby mean receptivity amplitudes are computed by averaging over many thousands of roughness realisations with variable length and wavelength filters. The amplitude of the cross-flow instability is significantly larger for roughness distributions near the conditions for neutral linear instability, while roughness elements radially outboard have a negligible effect on the receptivity process. Furthermore, receptivity increases sharply for roughness distributions that encompass wavelength scales equivalent to that associated with the cross-flow instability. Finally, mean receptivity characteristics are used to predict the radial range that stationary cross-flow vortices achieve amplitudes sufficient to invalidate the linear stability assumptions.


Author(s):  
Viji M ◽  
Srinivas Nistala Vikramaditya

Abstract Experiments were carried out to examine the impact of base cavities on the base pressure fluctuations and total drag of a cylindrical afterbody for freestream Mach numbers 0.6-1.5. Significant improvement in the base pressure and a substantial reduction in the afterbody drag was noticed in the presence of a base cavity at subsonic Mach numbers. However, on increasing the cavity length beyond a certain value its performance deteriorates. At supersonic Mach numbers their effectiveness drops drastically. Tones in the spectra can be classified into two types depending on the dominant azimuthal mode which is either 0 or 1 and are referred to as symmetric and an antisymmetric mode, respectively. Spectra at subsonic Mach numbers exhibit tones which are related either to mode 0 or 1. However, at supersonic Mach numbers only tones related to mode 0 exist. The base cavity either, effectively suppress the antisymmetric mode or modify it into a symmetric mode resulting in mitigation of the tones related to antisymmetric mode.


2021 ◽  
pp. 128-134
Author(s):  
Yu.O. Averkov ◽  
Yu.V. Prokopenko ◽  
A.A. Shmat’ko ◽  
V.M. Yakovenko

In this work, the excitation problem of bulk-surface helicons by a point magnetic dipole moving in a vacuum parallel to the element of magnetized solid-state plasma cylinder is theoretically studied. The external magnetic field is directed parallel to the cylinder axis. The problem is solved in the magnetostatic approximation. It is shown that hybrid modes of the magnetic type with large values of the azimuthal mode index and one field variation along the radius are most efficiently excited at nonrelativistic velocities of magnetic dipole.


2021 ◽  
Author(s):  
J. Kim ◽  
W. Gillman ◽  
T. John ◽  
S. Adhikari ◽  
D. Wu ◽  
...  

Abstract This paper analyzes the dynamics of unstable azimuthal thermoacoustic modes in a lean premixed combustor. Azimuthal modes can be decomposed into two counter rotating waves where they can either compete and potentially suppress one of them (spinning) or coexist (standing), depending on the operating conditions. This paper describes experimental results of the dynamical behaviors of these two waves. The experimental data were taken at different mass flow rates as well as different azimuthal fuel staging in a multi-nozzle can combustor. It is shown that at a low flow rate with uniform fuel distribution, the two waves have similar amplitudes, giving rise to a standing wave. However, the two amplitudes are slowly oscillating out of phase to each other, and the phase difference between the two waves also shows oscillatory behavior. For an intermediate flow rate, the dynamics show intermittency between standing and spinning waves, indicating that the system is bistable. In addition, the phase difference dramatically shifts when the mode switches between standing and spinning waves. For a high flow rate, the system stabilizes at a spinning wave most of the time. These experimental observations demonstrate that not only the amplitudes of two waves but also the phase difference plays an important role in the dynamics of azimuthal mode. For non-uniform azimuthal fuel staging, the modal dynamics exhibit only an oscillatory standing wave behavior regardless of the mass flow rate. Compared to the uniform fuel staging, however, the pressure magnitude is considerably reduced, which provides a potential strategy to mitigate and/or suppress the instabilities.


2021 ◽  
Author(s):  
Hong-Mei Peng ◽  
Bao-Fei Wan ◽  
Peng-Xiang Wang ◽  
Dan Zhang ◽  
Hai-Feng Zhang

Abstract In this paper, the characteristics of the omnidirectional band gap (OBG) for one-dimensional (1D) plasma cylindrical photonic crystals (PCPCs) are based on an improved Fibonacci topological (IFT) structure are studied. The influences of the azimuthal mode number, incident angle, plasma thickness, and plasma frequency on the OBG are discussed. It is concluded that increasing the azimuth modulus can significantly expand the bandwidth of the OBG, and the OBG can be moved to the low-frequency direction by increasing the plasma frequency. In addition, an interesting phenomenon can be found that when the number of azimuthal modes is equal to 2, the TM wave can produce an extra high reflection zone. It provides a theoretical support for designing the narrowband filters without introducing any physical defect layers in the structure.


Sign in / Sign up

Export Citation Format

Share Document