Abstract
The presence of metallic impurities in the electrolyte greatly affects electrocatalytic performance. A systematic study on this topic can not only provide guidance for rigorous practices on electrochemical measurements, but also in-depth fundamental understanding on the mechanisms of the electrochemical reactions. Herein, nine types of metallic ions including Cu2+, Ni2+, Fe3+, Fe2+, Co2+, Mn2+, Zn2+, Ce3+ and Al3+ are intentionally introduced into the electrolytes with a controlled manner and their effects on electro-oxidation of water, 5-hydroxymethylfurfural (HMF) and glycerol are investigated in details. Among these metal ions, Co2+ has the most pronounced effects on H2O electro-oxidation while Cu2+ species displays superior activity toward HMF and glycerol electro-oxidation, but negligible effects on H2O electro-oxidation. Such a unique feature of Cu2+ can also be noted from electro-oxidation of other small molecules, such as ethylene glycol, ethanol and furfural. More importantly, the effects of metallic impurities are independent of the composition of the electrodes, only rely on the pH of the electrolytes. In-situ electrochemical Raman spectroscopy, control electrochemical experiments and X-ray photoelectron spectroscopy analyses reveal that the origin of impurity effects is attributed to the formation of hydroxides during the electrochemical measurements.