homogeneous materials
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zahra Basiri ◽  
Mohammad Hosein Fakheri ◽  
Ali Abdolali ◽  
Chen Shen

AbstractHitherto acoustic cloaking devices, which conceal objects externally, depend on objects' characteristics. Despite previous works, we design cloaking devices placed adjacent to an arbitrary object and make it invisible without the need to make it enclosed. Applying sequential linear coordinate transformations leads to a non-closed acoustic cloak with homogeneous materials, creating an open invisible region. Firstly, we propose to design a non-closed carpet cloak to conceal objects on a reflecting plane. Numerical simulations verify the cloaking effect, which is completely independent of the geometry and material properties of the hidden object. Moreover, we extend this idea to achieve a directional acoustic cloak with homogeneous materials that can render arbitrary objects in free space invisible to incident radiation. To demonstrate the feasibility of the realization, a non-resonant meta-atom is utilized which dramatically facilitated the physical realization of our design. Due to the simple acoustic constitutive parameters of the presented structures, this work paves the way toward realization of non-closed acoustic devices, which could find applications in airborne sound manipulation and underwater demands.


2020 ◽  
Vol 6 (2) ◽  
pp. 57-65
Author(s):  
J. Kafle ◽  
L. P. Bagale ◽  
D. J. K. C.

In the real world, many physical problems like heat equation, wave equation, Laplace equation and Poisson equation are modeled by partial differential equations (PDEs). A PDE of the form ut = α uxx, (α > 0) where x and t are independent variables and u is a dependent variable; is a one-dimensional heat equation. This is an example of a prototypical parabolic equation. The heat equation has analytic solution in regular shape domain. If the domain has irregular shape, computing analytic solution of such equations is difficult. In this case, we can use numerical methods to compute the solution of such PDEs. Finite difference method is one of the numerical methods that is used to compute the solutions of PDEs by discretizing the given domain into finite number of regions. Here, we derived the Forward Time Central Space Scheme (FTCSS) for this heat equation. We also computed its numerical solution by using FTCSS. We compared the analytic solution and numerical solution for different homogeneous materials (for different values of diffusivity α). There is instantaneous heat transfer and heat loss for the materials with higher diffusivity (α) as compared to the materials of lower diffusivity. Finally, we compared simulation results of different non-homogeneous materials.


Author(s):  
Liubov Magerramova ◽  
Michael Volkov ◽  
Oleg Volgin ◽  
Pavel Kolos

Abstract Lattice/cell structures have relatively high characteristics of rigidity and strength, excellent thermal insulation properties, energy absorption characteristics, and high fatigue resistance. The use of this type of structure in engine part construction opens up new opportunities for advanced aviation applications. However, the deformation behavior of porous and metallic structures differs significantly from that of conventional homogeneous materials. Samples with cellular and porous structures are themselves designs. Therefore, procedures for strength testing and interpretation of experimental results for cellular and porous structures differ from those for samples derived from homogeneous materials. The criteria for determining the properties of cellular structures include density, stiffness, ability to accumulate energy, etc. These parameters depend on the configuration of the cells, the size of each cell, and the thickness of the connecting elements. Mechanical properties of cellular structures can be established experimentally and confirmed numerically. Special cellular specimens have been designed for uniaxial tensile, bending, compression, shear, and low-cycle fatigue testing. Several variants of cell structures with relative densities ranging from 13 to 45% were considered. Specifically, the present study examined the stress-strain states of cell structures from brands "CobaltChrome MP1" powder compositions obtained by laser synthesis on an industrial 3D printer Concept Laser M2 Cusing Single Laser 400W. Numerical simulations of the tests were carried out by the finite element method. Then, the most rational cellular structures in terms of mass and strength were established on the basis of both real and numerical experiments.


Author(s):  
Liubov Magerramova ◽  
Michael Volkov ◽  
Oleg Volgin ◽  
Pavel Kolos

Abstract The use of cellular structures is one way to reduce the weight of engine parts. Cellular structures are used to provide rigidity and strength for parts subject to compression, bending, and shock loads. Failure of the individual elements of a lattice/cell structure does not result in the destruction of the entire part; this stands in contrast to the structure of a conventional homogeneous metal object, in which cracks will continue to increase with increasing load, causing the destruction of the entire part. Lattice/cell structures have relatively high characteristics of rigidity and strength, excellent thermal insulation properties, energy absorption characteristics, and high fatigue resistance. The use of this type of structure in engine part construction opens up new opportunities for advanced aviation applications. However, the deformation behavior of porous and metallic structures differs significantly from that of conventional homogeneous materials. Samples with cellular and porous structures are themselves designs. Therefore, procedures for strength testing and interpretation of experimental results for cellular and porous structures differ from those for samples derived from homogeneous materials. The criteria for determining the properties of cellular structures include density, stiffness, ability to accumulate energy, etc. These parameters depend on the configuration of the cells, the size of each cell, and the thickness of the connecting elements. Mechanical properties of cellular structures can be established experimentally and confirmed numerically. Special cellular specimens have been designed for uniaxial tensile, bending, compression, shear, and low-cycle fatigue testing. Several variants of cell structures with relative densities ranging from 13 to 45% were considered. Specifically, the present study examined the stress-strain states of cell structures from brands “CobaltChrome MP1” powder compositions obtained by laser synthesis on an industrial 3D printer Concept Laser M2 Cusing Single Laser 400W. Numerical simulations of the tests were carried out by the finite element method. Then, the most rational cellular structures in terms of mass and strength were established on the basis of both real and numerical experiments.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 651 ◽  
Author(s):  
David Moises Baca Lopez ◽  
Rafiq Ahmad

The application of single homogeneous materials produced through the fused deposition modelling (FDM) technology restricts the production of high-level multi-material components. The fabrication of a sandwich-structured specimen with different material combinations using conventional thermoplastics such as poly (lactic acid) (PLA), acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) through the filament-based extrusion process can demonstrate an improvement on its properties. This paper aims to assess among these materials, the best material sandwich-structured arrangement design, to enhance the mechanical properties of a part and to compare the results with the homogeneous materials selected. The samples were subjected to tensile testing to identify the tensile strength, elongation at break and Young’s modulus of each material combination. The experimental results demonstrate that applying the PLA-ABS-PLA sandwich arrangement leads to the best mechanical properties between these materials. This study enables users to consider sandwich structure designs as an alternative to manufacturing multi-material components using conventional and low-cost materials. Future work will consider the flexural tests to identify the maximum stresses and bending forces under pressure.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 26468-26477
Author(s):  
Zhenzhong Yu ◽  
Zhong Yang ◽  
Yan Zhang ◽  
Xingliu Hu ◽  
Yizhi Wang

2019 ◽  
Vol 489 (5) ◽  
pp. 469-472
Author(s):  
V. M. Fomin ◽  
A. A. Filippov

The method allows determining the mechanical characteristic of nanoobjects was presented. A heterogeneous material consisting of a nanophase and a binder phase was considered, the mass and volume concentrations of components were given. Heterogeneous material is reduced to homogeneous by averaging methods while the mechanical characteristics will be associated with averaged ones. Assuming that the mechanical characteristics of the binder and averaged homogeneous materials are known from mechanical tests, the system of equations allow us to determine the mechanical characteristics of nanoobjects included in this heterogeneous material. It is believed that the mechanical characteristics of bonding and averaged homogeneous materials make it possible to obtain equations of equations that allow one to determine the mechanical characteristics of nano-objects present in this heterogeneous material. Classical mechanical tests were carried out, describing the uniaxial stress and strain states of materials, which made it possible to obtain an analytical form the dependences of the mechanical characteristics of nanophases depending on their size. Specific examples are given for silica dioxide nanoparticles (Aerosil and Tarkosil powders).


Sign in / Sign up

Export Citation Format

Share Document