nucleoside transporter
Recently Published Documents


TOTAL DOCUMENTS

761
(FIVE YEARS 113)

H-INDEX

60
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 710
Author(s):  
Gustavo D. Campagnaro ◽  
Hamza A. A. Elati ◽  
Sofia Balaska ◽  
Maria Esther Martin Abril ◽  
Manal J. Natto ◽  
...  

Toxoplasma gondii is unable to synthesize purines de novo, instead salvages them from its environment, inside the host cell, for which they need high affinity carriers. Here, we report the expression of a T. gondii Equilibrative Nucleoside Transporter, Tg244440, in a Trypanosoma brucei strain from which nucleobase transporters have been deleted. Tg244440 transported hypoxanthine and guanine with similar affinity (Km ~1 µM), while inosine and guanosine displayed Ki values of 4.05 and 3.30 µM, respectively. Low affinity was observed for adenosine, adenine, and pyrimidines, classifying Tg244440 as a high affinity oxopurine transporter. Purine analogues were used to probe the substrate-transporter binding interactions, culminating in quantitative models showing different binding modes for oxopurine bases, oxopurine nucleosides, and adenosine. Hypoxanthine and guanine interacted through protonated N1 and N9, and through unprotonated N3 and N7 of the purine ring, whereas inosine and guanosine mostly employed the ribose hydroxy groups for binding, in addition to N1H of the nucleobase. Conversely, the ribose moiety of adenosine barely made any contribution to binding. Tg244440 is the first gene identified to encode a high affinity oxopurine transporter in T. gondii and, to the best of our knowledge, the first purine transporter to employ different binding modes for nucleosides and nucleobases.


Author(s):  
Robert Hermann ◽  
Peter Krajcsi ◽  
Markus Fluck ◽  
Annick Seithel-Keuth ◽  
Afrim Bytyqi ◽  
...  

2021 ◽  
pp. 1-5
Author(s):  
Geoff Daniels

Augustine (AUG) is a blood group system comprising four antigens: AUG1, AUG2 (At<sup>a</sup>), and AUG4 are of very high frequency; AUG3 is of very low frequency. These antigens are located on ENT1, an equilibrative nucleoside transporter encoded by <i>SLC19A1</i>. AUG antibodies are of clinical relevance in blood transfusion and pregnancy: anti-AUG2 have caused haemolytic transfusion reactions; the only anti-AUG3 was associated with severe haemolytic disease of the fetus and newborn. ENT1 is present in almost all human tissues. It facilitates the transfer of purine and pyrimidine nucleosides and is responsible for the majority of adenosine transport across plasma membranes. Adenosine transport appears to be an important factor in the regulation of bone metabolism. The AUG<sub>null</sub> phenotype (AUG:–1,–2,–3,–4) has been found in three siblings, who are homozygous for an inactivating splice-site mutation in <i>SLC29A1</i>. Although ENT1 is very likely to be absent from all cells in these three individuals, they were apparently healthy with normal lifestyles. However, they suffered frequent attacks of pseudogout, a form of arthritis, in various joints with multiple calcifications around their hand joints. Ectopic calcification in the hips, pubic symphysis, and lumbar discs was present in the propositus. The three AUG<sub>null</sub> individuals had misshapen red cells with deregulated protein phosphorylation, but no anaemia or shortening of red cell lifespan. Defective in vitro erythropoiesis in the absence of ENT1 was confirmed by shRNA-mediated knockdown of ENT1 during in vitro erythropoiesis of CD34<sup>+</sup> progenitor cells from individuals with normal ENT1. Nucleoside transporters, such as ENT1, are vital in the uptake of synthetic nucleoside analogue drugs, used in cancer and viral chemotherapy. It is feasible that the efficacy of these drugs would be compromised in patients with the extremely rare AUG<sub>null</sub> phenotype.


2021 ◽  
Vol 108 (Supplement_9) ◽  
Author(s):  
Nicholas Bird ◽  
Nichola Manu ◽  
Mark QuinnL ◽  
Rafa Diaz-Nieto ◽  
Stephen Fenwick ◽  
...  

Abstract Background Human equilibriative nucleoside transporter protein 1 (hENT1) is a trans-membranous protein which facilitates nucleoside transport in to the cell. Immunohistochemically-detected hENT1 abundance is increased in cholangiocarcinoma tumour cells compared to matched non-tumour cells and increased in highly metabolising cells. The privately-held Mackey 10D7G2 hybridoma has demonstrated prognostic utility in Pancreatic Ductal Adenocarcinoma patients. The commercially available Proteintech Polyclonal hENT1 antibody’s prognostic utility has not been previously assessed. Cellular Ki67 expression has been linked to mitotic indices of tumour proliferation. This proof-of-concept study aims to assess the antibodies prognostic utility for hilar cholangiocarcinoma patients undergoing surgical resection. Methods Between February 2009 and February 2016 54 patients underwent resection for peri-hilar cholangiocarcinoma. Formalin-Fixed Paraffin Embedded (FFPE) blocks from a sub-set of 44 resected specimens were retrieved. Appropriate areas of tumour were sampled from the blocks and a Tissue-Matched Array (TMA) was constructed. The TMA underwent staining for each antibody. H-scores were utilised to determine intensity of expression. Correlation of expression between antibodies was determined by Pearson correlation co-efficient and Chi-squared where appropriate. Silencing RNA transfected HepG2 cell-lines was used to determine hENT1 staining by the Proteintech antibody. Demographic and survival characteristics for the patients were acquired from a prospectively held database linked to Hospital Episode Statistics. Survival characteristics were calculated with global log-rank calculations. Results There was significant correlation between the Mackey 10D7G2 and the Proteintech antibodies (p &lt; 0.001). There was significant correlation between the Proteintech hENT1 antibody expression and Ki67 expression (p = 0.02). Knockdown of hENT1 with silencing RNA transfected HepG2 cells was confirmed by Western blot in a time-dependent fashion over 72 hours. The antibodies (Mackey; Proteintech; Ki67) did not achieve significance for predicting OS (p = 0.75; 0.63; 0.22 respectively). Nodal stage (p = 0.03) and grade of tumour differentiation (p = 0.02) were the univariate tumour variables with prognostic utility. Conclusions While the Proteintech antibody demonstrates concordance with the 10D7G2 antibody in determining hENT1 expression the antibodies did not demonstrate significant prognostic ability in this proof-of-concept study. Standard histopathological co-variates retain prognostic utility within the cohort.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi5-vi5
Author(s):  
Masahiro Yamamoto ◽  
Hiroyuki Uchida ◽  
Hajime Yonezawa ◽  
Nayuta Higa ◽  
Yuki Yamada ◽  
...  

Abstract Background: High-grade meningiomas are aggressive tumors with high morbidity and mortality rates that frequently recur even after surgery and adjuvant radiotherapy. However, limited information is currently available on the biology of these tumors, and no alternative adjuvant treatment options exist. Although we previously demonstrated that high-grade meningioma cells were highly sensitive to gemcitabine in vitro and in vivo, the underlying molecular mechanisms remain unknown. Methods: We examined the roles of hENT1 (human equilibrative nucleoside transporter 1) and dCK (deoxycytidine kinase) in the gemcitabine sensitivity and growth of meningioma cells in vitro. Tissue samples from meningiomas (26 WHO grade I and 21 WHO grade II/III meningiomas) were immunohistochemically analyzed for hENT1 and dCK as well as for Ki-67 as a marker of proliferative activity. Results: hENT1 and dCK, which play critical roles in the intracellular transport and activation of gemcitabine, respectively, were responsible for the high gemcitabine sensitivity of high-grade meningioma cells and were strongly expressed in high-grade meningiomas. hENT1 expression was required for the proliferation and survival of high-grade meningioma cells and dCK expression. Furthermore, high hENT1 and dCK expression levels correlated with stronger tumor cell proliferative activity and shorter survival in meningioma patients. Conclusions: The present results suggest that hENT1 is a key molecular factor influencing the growth capacity and gemcitabine sensitivity of meningioma cells and also that hENT1, together with dCK, may be a viable prognostic marker for meningioma patients as well as a predictive marker of their responses to gemcitabine.


2021 ◽  
Author(s):  
Bradley M Roberts ◽  
Elizabeth Lambert ◽  
Jessica A Livesey ◽  
Zhaofa Wu ◽  
Yulong Li ◽  
...  

Striatal adenosine A1 receptor (A1R) activation can inhibit dopamine release. A1Rs on other striatal neurons are activated by an adenosine tone that is limited by equilibrative nucleoside transporter 1 (ENT1) that is enriched on astrocytes and is ethanol-sensitive. We explored whether dopamine release in nucleus accumbens core is under tonic inhibition by A1Rs, and is regulated by astrocytic ENT1 and ethanol. In ex vivo striatal slices from male and female mice, A1R agonists inhibited dopamine release evoked electrically or optogenetically and detected using fast-scan cyclic voltammetry, most strongly for lower stimulation frequencies and pulse numbers, thereby enhancing the activity-dependent contrast of dopamine release. Conversely, A1R antagonists reduced activity-dependent contrast but enhanced evoked dopamine release levels, even for single optogenetic pulses indicating an underlying tonic inhibition. The ENT1 inhibitor NBTI reduced dopamine release and promoted A1R-mediated inhibition, and conversely, virally-mediated astrocytic overexpression of ENT1 enhanced dopamine release and relieved A1R-mediated inhibition. By imaging the genetically encoded fluorescent adenosine sensor GRAB-Ado, we identified a striatal extracellular adenosine tone that was elevated by the ENT1 inhibitor and sensitive to gliotoxin fluorocitrate. Finally, we identified that ethanol (50 mM) promoted A1R-mediated inhibition of dopamine release, through diminishing adenosine uptake via ENT1. Together, these data reveal that dopamine output dynamics are gated by a striatal adenosine tone, limiting amplitude but promoting contrast, regulated by ENT1, and promoted by ethanol. These data add to the diverse mechanisms through which ethanol modulates striatal dopamine, and to emerging datasets supporting astrocytic transporters as important regulators of striatal function.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5758
Author(s):  
Karen Aughton ◽  
Nils O. Elander ◽  
Anthony Evans ◽  
Richard Jackson ◽  
Fiona Campbell ◽  
...  

Gemcitabine or 5-fluorouracil (5-FU) based treatments can be selected for pancreatic cancer. Equilibrative nucleoside transporter 1 (hENT1) predicts adjuvant gemcitabine treatment benefit over 5-FU. Cytidine deaminase (CDA), inside or outside of the cancer cell, will deaminate gemcitabine, altering transporter affinity. ESPAC-3(v2) was a pancreatic cancer trial comparing adjuvant gemcitabine and 5-FU. Tissue microarray sections underwent in situ hybridization and immunohistochemistry. Analysis of both CDA and hENT1 was possible with 277 patients. The transcript did not correlate with protein levels for either marker. High hENT1 protein was prognostic with gemcitabine; median overall survival was 26.0 v 16.8 months (p = 0.006). Low CDA transcript was prognostic regardless of arm; 24.8 v 21.2 months with gemcitabine (p = 0.02) and 26.4 v 14.6 months with 5-FU (p = 0.02). Patients with low hENT1 protein did better with 5-FU, but only if the CDA transcript was low (median survival of 5-FU v gemcitabine; 29.3 v 18.3 months, compared with 14.2 v 14.6 with high CDA). CDA mRNA is an independent prognostic biomarker. When added to hENT1 protein status, it may also provide treatment-specific predictive information and, within the frame of a personalized treatment strategy, guide to either gemcitabine or 5FU for the individual patient.


2021 ◽  
Author(s):  
Manal J. Natto ◽  
Yukiko Miyamoto ◽  
Jane C. Munday ◽  
Tahani A. AlSiari ◽  
Mohammed I. Al‐Salabi ◽  
...  

2021 ◽  
Author(s):  
Luyi Cheng ◽  
Elise N. White ◽  
Naomi L. Brandt ◽  
Angela M Yu ◽  
Alan A. Chen ◽  
...  

RNA folds cotranscriptionally to traverse out-of-equilibrium intermediate structures that are important for RNA function in the context of gene regulation. To investigate this process, here we study the structure and function of the Bacillus subtilis yxjA purine riboswitch, a transcriptional riboswitch that downregulates a nucleoside transporter in response to binding guanine. Although the aptamer and expression platform domain sequences of the yxjA riboswitch do not completely overlap, we hypothesized that a strand exchange process triggers its structural switching in response to ligand binding. In vivo fluorescence assays, structural chemical probing data, and experimentally informed secondary structure modeling suggest the presence of a nascent intermediate central helix. The formation of this central helix in the absence of ligand appears to compete with both the aptamer's P1 helix and the expression platform's transcriptional terminator. All-atom molecular dynamics simulations support the hypothesis that ligand binding stabilizes the aptamer P1 helix against central helix strand invasion, thus allowing the terminator to form. These results present a potential model mechanism to explain how ligand binding can induce downstream conformational changes by influencing local strand displacement processes of intermediate folds that could be at play in multiple riboswitch classes.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Hamza Chouk ◽  
Mohamed Ben Rejeb ◽  
Lobna Boussofara ◽  
Haїfa Elmabrouk ◽  
Najet Ghariani ◽  
...  

Abstract Background Mutations in the SLC29A3 gene, which encodes the nucleoside transporter hENT3, have been implicated in syndromic forms of histiocytosis including H syndrome, pigmented hypertrichosis with insulin-dependent diabetes, Faisalabad histiocytosis and Familial Rosai–Dorfman disease (RDD). Herein, we report five new patients from a single family who present with phenotypes that associate features of H syndrome and Familial Rosai–Dorfman disease. Methods We investigated the clinical, biochemical, histopathological and molecular findings in five Tunisian family members' diagnosed with Familial RDD and/or H syndrome. The solute carrier family 29 (nucleoside transporters), member 3 (SLC29A3) gene was screened for molecular diagnosis using direct Sanger sequencing. Results Genetic analysis of all affected individuals revealed a previously reported missense mutation c.1088 G > A [p.Arg363Gln] in exon 6 of the SLC29A3 gene. Four affected members presented with clinical features consistent with the classical H syndrome phenotype. While their cousin’s features were in keeping with Familial Rosai–Dorfman disease diagnosis with a previously undescribed cutaneous RDD presenting as erythematous nodular plaques on the face. This report underlines the clinical variability of SLC29A3 disorders even with an identical mutation in the same family. Conclusion We report a rare event of 5 Tunisian family members' found to be homozygous for SLC29A3 gene mutations but showing a different phenotype severity. Our study reveals that despite a single mutation, the clinical expression of the SLC29A3 disorders may be significantly heterogeneous suggesting a poor genotype–phenotype correlation for the disease.


Sign in / Sign up

Export Citation Format

Share Document