plasmon induced transparency
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 141)

H-INDEX

38
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Shuaizhao Wang ◽  
Houquan Liu ◽  
Jian tang ◽  
Ming Chen ◽  
Youdan Zhang ◽  
...  

Author(s):  
Yuhui Li ◽  
Yiping Xu ◽  
Jiabao Jiang ◽  
Liyong Ren ◽  
Shubo Cheng ◽  
...  

Abstract A monolayer graphene metamaterial composed of a graphene block and four graphene strips, which has the metal-like properties in terahertz frequency range, is proposed to generate an outstanding quadruple plasmon-induced transparency (PIT). Additional analyses show that the forming physical mechanism of the PIT with four transparency windows can be explained by strong destructive interference between the bright mode and the dark mode, and the distributions of electric field intensity and electric field vectors under the irradiation of the incident light. Coupled mode theory (CMT) and finite-difference time-domain (FDTD) method are employed to study the spectral response characteristics of the proposed structure, and the theoretical and simulated results are in good agreement. It is found that a tunable multi-frequency switch and excellent optical storage can be achieved in the wide PIT window. The maximum modulation depth is up to 99.7%, which corresponds to the maximum extinction ratio of 25.04 dB and the minimum insertion loss of 0.19 dB. In addition, the time delay is as high as 0.919 ps, the corresponding group refractive index is up to 2755. Thus, the proposed structure provides a new method for the design of terahertz multi-frequency switches and slow light devices.


Author(s):  
Pengju Yao ◽  
Biao Zeng ◽  
Enduo Gao ◽  
Hao Zhang ◽  
Chao Liu ◽  
...  

Abstract We propose a novel terahertz metamaterial structure based on patterned monolayer graphene. This structure produces an evident dual plasmon-induced transparency (PIT) phenomenon due to destructive interference between bright and dark modes. Since the Fermi level of graphene can be adjusted by an external bias voltage, the PIT phenomenon can be tuned by adjusting the voltage. Then the coupled-mode theory (CMT) is introduced to explore the internal mechanism of the PIT. After that, we investigate the variation of absorption rate at different graphene carrier mobilities, and it shows that the absorption rate of this structure can reach 50%, which is a guideline for the realization of graphene terahertz absorption devices. In addition, through the study of the slow-light performance for this structure, it is found that its group index is as high as 928, which provides a specific theoretical basis for the study of graphene slow-light devices.


2022 ◽  
Vol 20 (1) ◽  
pp. 013701
Author(s):  
Hao Sun ◽  
Jianghua Zhang ◽  
Yuhua Tang ◽  
Hengzhu Liu ◽  
Jie Yang ◽  
...  

2022 ◽  
Vol 71 (2) ◽  
pp. 024201-024201
Author(s):  
Wang Bo-Yun ◽  
◽  
Zhu Zi-Hao ◽  
Gao You-Kang ◽  
Zeng Qing-Dong ◽  
...  

Author(s):  
Shuxian Chen ◽  
Junyi Li ◽  
Zicong Guo ◽  
Li Chen ◽  
Kunhua Wen ◽  
...  

Abstract Plasmon-induced transparency (PIT) is theoretically explored with a graphene metamaterial using finite-difference time-domain numerical simulations and coupled-mode-theory theoretical analysis. In this work, the proposed structure is consisted of one rectangular cavity and three strips to generate the PIT phenomenon. The PIT window can be regulated dynamically by adjusting the Fermi level of the graphene. Importantly, the modulation depth of the amplitude can reach 90.4%. The refractive index sensitivity of the PIT window is also investigated, and the simulation result shows that a sensitivity of 1.335 THz/RIU is achieved. Additionally, when the polarization angle of the incident light is changed gradually from 0˚ to 90˚, the performances of the structure are greatly affected. Finally, the proposed structure is particularly enlightening for the design of dynamically tuned terahertz devices.


Sign in / Sign up

Export Citation Format

Share Document