etch pits
Recently Published Documents


TOTAL DOCUMENTS

621
(FIVE YEARS 38)

H-INDEX

35
(FIVE YEARS 2)

Author(s):  
Osamu Ueda ◽  
Makoto Kasu ◽  
Hirotaka Yamaguchi

Abstract This paper reviews the status of characterization of defects in β-Ga2O3 crystals grown by edge-defined film-fed growth and hydride vapor phase epitaxy using chemical etching, scanning electron microscopy, focused ion beam scanning ion microscopy, X-ray topography (XRT), and transmission electron microscopy (TEM). The observed defects are classified into four types: dislocations, stacking faults (SFs), twins, and plate-like nanovoids (PNVs). First, we present the detailed characterization of dislocations in the crystal by chemical etching, XRT, and TEM, and discuss possible slip systems. Next, we describe XRT analyses of two types of SFs: SFs 1 lying on the (2 ̅01) plane and SFs 2 on the (111) and (11 ̅1) planes. We describe the results for twins found in crystals via high-resolution TEM and electron diffraction analysis, and PNVs corresponding to etch pits on the (010) plane. Finally, we discuss possible generation mechanisms of the defects and their influence on device characteristics.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012043
Author(s):  
V A Vorontsov ◽  
D A Antonov ◽  
A V Kruglov ◽  
I N Antonov ◽  
M E Shenina ◽  
...  

Abstract We report on an experimental study of resistive switching (RS) of individual dislocations in Ag/Ge/Si(001) memristors by combined grazing incidence ion sputtering of the Ag electrodes and application of Conductive Atomic Force Microscopy to provide an electrical contact to individual Ag-filled dislocations in the Ge layer. Two types of RS were observed corresponding to two different RS mechanisms: (i) drift of Ag+ ions inside the dislocation cores and (ii) RedOx reactions in residual GeO x in the etch pits on the Ge layer surface.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1229
Author(s):  
Valeri Sonin ◽  
Egor Zhimulev ◽  
Aleksei Chepurov ◽  
Ivan Gryaznov ◽  
Anatoly Chepurov ◽  
...  

Diamond etching in high-temperature ambient-pressure experiments has been performed aimed to assess possible postimpact effects on diamonds in impact craters, for the case of the Popigai crater in Yakutia (Russia). The experiments with different etchants, including various combinations of silicate melts, air, and inert gases, demonstrated the diversity of microstructures on {111} diamond faces: negative or positive trigons, as well as hexagonal, round, or irregularly shaped etch pits and striation. The surface features obtained after etching experiments with kimberlitic diamonds are similar to those observed on natural impact diamonds with some difference due to the origin of the latter as a result of a martensitic transformation of graphite in target rocks. Extrapolated to natural impact diamonds, the experimental results lead to several inferences: (1) Diamond crystals experienced natural oxidation and surface graphitization during the pressure decrease after the impact event, while the molten target rocks remained at high temperatures. (2) Natural etching of diamonds in silicate melts is possible in a large range of oxidation states controlled by O2 diffusion. (3) Impact diamonds near the surface of molten target rocks oxidized at the highest rates, whereas those within the melt were shielded from the oxidizing agents and remained unchanged.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5890
Author(s):  
Hejing Wang ◽  
Jinying Yu ◽  
Guojie Hu ◽  
Yan Peng ◽  
Xuejian Xie ◽  
...  

Micropipe, a “killer” defect in SiC crystals, severely hampers the outstanding performance of SiC-based devices. In this paper, the etching behavior of micropipes in 4H-SiC and 6H-SiC wafers was studied using the molten KOH etching method. The spectra of 4H-SiC and 6H-SiC crystals containing micropipes were examined using Raman scattering. A new Raman peak accompanying micropipes located near −784 cm−1 was observed, which may have been induced by polymorphic transformation during the etching process in the area of micropipe etch pits. This feature may provide a new way to distinguish micropipes from other defects. In addition, the preferable etching conditions for distinguishing micropipes from threading screw dislocations (TSDs) was determined using laser confocal microscopy, scanning electron microscopy (SEM) and optical microscopy. Meanwhile, the micropipe etching pits were classified into two types based on their morphology and formation mechanism.


Author(s):  
Kazuki Miyata ◽  
Kazuyoshi Takeuchi ◽  
Yuta Kawagoe ◽  
Peter Spijker ◽  
John Tracey ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 866
Author(s):  
Václav Suchý ◽  
Kateřina Pachnerová Brabcová ◽  
Jiří Zachariáš ◽  
Ivo Světlík ◽  
Lenka Borecká

Gothic arch calcite, a specific crystallographic variety of calcite known from some hot springs and tufa streams, has been newly recognized in the Koněprusy Caves. The gothic-arch calcite occurs on the exteriors of exotic coralloid speleothems where it coexists with scalenohedral (dogtooth) spar crystals. The crystals exhibit microscopic ultrastructural features including deeply eroded topography, etch pits, and spiky and ribbon calcite crystallites, pointing to its extensive natural etching. Many gothic-arch calcites originated as late-stage, secondary overgrowths on older, etched dogtooth calcite crystals. Its characteristic outward curvature resulted from the recrystallization of etching-liberated fine carbonate grains and newly formed needle-fiber calcite laths, which were accumulated and bound on the faces and at the bases of corroded crystals. These intimately coexisting destructive and constructive processes of carbonate crystal corrosion and growth were probably mediated by bacteria, fungi, or other microorganisms. Fluid inclusions embedded in calcite crystals point to a vadose setting and temperatures below ~50 °C. This, combined with the wider geological context, indicates that the gothic arch calcite crystals originated only during the late Pleistocene to Holocene epochs, when the cave, initially eroded by hypogene fluids in the deeper subsurface, was uplifted to the subaerial setting and exposed to the meteoric waters seeping from the topographic surface. The radiocarbon analysis shows that gothic-arch calcite crystals are generally older than ~55,000 years, but the surface layers of some crystals still reveal a weak 14C activity, suggesting that microbiologically mediated alterations of the speleothems may have been occurring locally until now.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 376
Author(s):  
Shaoxiong Ye ◽  
Pan Feng ◽  
Jiaping Liu

The interaction of organic molecules with calcite surfaces plays a key role in many geochemical, industrial and biomineralization processes, and exploring the influences of organic molecules on calcite reactions is crucial for a fundamental understanding of the reaction mechanisms. Here, we used digital hologram microscopy to explore the in situ evolution of the calcite (104) surfaces when dissolved in ethanol–water solutions, and total organic carbon analysis was applied to confirm the adsorption of ethanol by calcite. The results showed that the bulk dissolution rate of calcite decreases as the volume fraction of ethanol increases, and the topographic features of etch pits were also altered by the presence of ethanol. When exposed to too much ethanol, the etch pits’ growth was inhibited and their shapes tended to change from rhombuses in ultrapure water to triangles. Our results provide insights into the interaction between adsorbed ethanol and evolving calcite crystal, which highlights the dissolution regulation of calcite by organic molecules that could benefit a broad range of fields.


2021 ◽  
Vol 91 (3) ◽  
pp. 229-242
Author(s):  
MOHAMMED S. HASHIM ◽  
STEPHEN E. KACZMAREK

Abstract Phanerozoic limestones are composed of low-Mg calcite microcrystals (i.e., micrite) that typically measure between 1 and 9 μm in diameter. These microcrystals, which host most of the microporosity in subsurface reservoirs, are characterized by a variety of microtextures. Despite the overwhelming consensus that calcite microcrystals are diagenetic, the origin of the various textures is widely debated. The most commonly reported texture is characterized by polyhedral and rounded calcite microcrystals, which are interpreted to form via partial dissolution of rhombic microcrystals during burial diagenesis. A proposed implication of this model is that dissolution during burial is responsible for significant porosity generation. This claim has been previously criticized based on mass-balance considerations and geochemical constrains. To explicitly test the dissolution model, a series of laboratory experiments were conducted whereby various types of calcites composed of rhombic and polyhedral microcrystals were partially dissolved under a constant degree of undersaturation, both near and far-from-equilibrium. Our results indicate that calcite crystals dissolved under far-from-equilibrium conditions develop rounded edges and corners, inter-crystal gulfs (narrow grooves or channels between adjacent crystals), and a few etch pits on crystal faces—observations consistent with the burial-dissolution hypothesis. Crystals dissolved under near-equilibrium conditions, in contrast, retain sharp edges and corners and develop ledges and pits—suggesting that dissolution occurs more selectively at high-energy sites. These observations support the longstanding understanding that far-from-equilibrium dissolution is transport-controlled, and near-equilibrium dissolution is surface-controlled. Our results also show that while the rhombic calcite crystals may develop rounded edges and corners when dissolved under far-from-equilibrium conditions the crystals themselves do not become spherical. By contrast, polyhedral crystals not only develop rounded edges and corners when dissolved under far-from-equilibrium conditions but become nearly spherical with continued dissolution. Collectively, these observations suggest that rounded calcite microcrystals more likely form from a precursor exhibiting an equant polyhedral texture, rather than from a euhedral rhombic precursor as previously proposed. Lastly, the observation that calcite crystals developed rounded edges and corners and inter-crystal gulfs after only 5% dissolution indicates that the presence of such features in natural limestones need not imply that significant porosity generation has occurred.


2021 ◽  
Author(s):  
Dalton J. Leprich ◽  
Beverly E. Flood ◽  
Peter R. Schroedl ◽  
Elizabeth Ricci ◽  
Jeffery J. Marlow ◽  
...  

AbstractCarbonate rocks at marine methane seeps are commonly colonized by sulfur-oxidizing bacteria that co-occur with etch pits that suggest active dissolution. We show that sulfur-oxidizing bacteria are abundant on the surface of an exemplar seep carbonate collected from Del Mar East Methane Seep Field, USA. We then used bioreactors containing aragonite mineral coupons that simulate certain seep conditions to investigate plausible in situ rates of carbonate dissolution associated with sulfur-oxidizing bacteria. Bioreactors inoculated with a sulfur-oxidizing bacterial strain, Celeribacter baekdonensis LH4, growing on aragonite coupons induced dissolution rates in sulfidic, heterotrophic, and abiotic conditions of 1773.97 (±324.35), 152.81 (±123.27), and 272.99 (±249.96) μmol CaCO3 • cm−2 • yr−1, respectively. Steep gradients in pH were also measured within carbonate-attached biofilms using pH-sensitive fluorophores. Together, these results show that the production of acidic microenvironments in biofilms of sulfur-oxidizing bacteria are capable of dissolving carbonate rocks, even under well-buffered marine conditions. Our results support the hypothesis that authigenic carbonate rock dissolution driven by lithotrophic sulfur-oxidation constitutes a previously unknown carbon flux from the rock reservoir to the ocean and atmosphere.


Sign in / Sign up

Export Citation Format

Share Document